Measurement Models for Market Risk Management in Nigeria

Page 1

BOHRInternationalJournalofFinancialMarketandCorporateFinance 2021,Vol.1,No.1,pp.50–60 https://doi.org/10.54646/bijfmcf.010 www.bohrpub.com

MeasurementModelsforMarketRiskManagementinNigeria

AdeolaKudiratBanjo1 andOmotayoJohncallyAbere2,∗

1DepartmentofActuarialScience,LagosStateUniversityofScienceandTechnology(LASUSTECH), Lagos,Nigeria

2DepartmentofActuarialScience&Insurance,UniversityofLagos,Nigeria

∗Correspondingauthor:johncally68@yahoo.com

Abstract. Marketriskisconnectedwiththepricefluctuationsandothermarketfactormovementsonfourofthe world’smostprominentfinancialmarkets:Debtsecuritiesmarket,stockmarket,currencymarketandcommodity market.Thehighlevelofunpredictabilityinthemarketinwhichorganizationsoperateisasignificantelement drivingthefastgrowthofriskmeasurementandmanagement.Firmsareexposedtomoremarketriskinavolatile environment,whichoffersamotivatorforthemtodevelopnewandimprovedriskmodels.Thispapergenerally analysestheperformanceofdifferentmodelswhichtrytosolve,estimate,measureandmanagevariousmarketrisks inordertoderiveparameterswhichaidgooddecisionmaking.

Keywords: Insurancemarketrisk,volatility,riskmanagement,valueatrisk(VaR).

INTRODUCTION

BackgroundtotheStudy

AccordingtoAma(2009),There’sachancethatagoalorientedsystem’sfavourableexpectationswon’tbemet. Anghelache,Voineagu,CuletuandBaltac(2013)viewed Marketriskisdefinedasthepossibilityoflosingmoney onapositionduetochangesinmarketpricingandother riskvariables.Becauseeachcategorizationmaypertain todistinctaspectsofmarkethazards,thereisnoone classificationformarketrisks.Equityrisk,interestrate risk,currencyrisk,commodityrisk,marginrisk,shape risk,holdingperiodrisk,basisrisk,image/reputational risk,andsoonarethemostprevalentformsofmarkethazards.Theequityriskisthepossibilitythatstock indices/pricesorimpliedvolatilitywillchange,whereas theinterestrateriskisthepossibilitythatinterestratesor impliedvolatilitywillchange.Thecurrencyriskistherisk ofchangesininternationalexchangerates.Marginrisks arisefromtheuncertaintyoffuturecashwithdrawalsasa consequenceofmargincallstocoverunfavorableposition valuechanges.Imageriskconcernsitselfwiththereputationofanorganization.Iftheimage/reputationisdented inonewayortheother,businessesinthatmarketwill

beaffectedadversely.AnexampleofthisinNigeriain 2017wasthecasebetweentheGTBankversusthechairmanofInnosonVehicleManufacturing(IVM),DrInnocent IfediasoChukwuma.Anotherillustrationistheharmnonsettlementofclaimshasdonetothereputationofinsurance industryinNigeria.

Allthesemarketrisksposethreatstotheattainment ofmajorobjectiveandtomaximizationofadvantages (suchastheutilityfortheconsumersandprofitforthe enterprise).Risksaretakenbyallenterprisesdependingontwofactors:thebusinessanalysts’viewoflikelihood/probabilityoflossoccurrencesandviewofmoney basedonwealth(Banjo,2019).Marketriskislinkedtoprice changesandothermarketelementmovementsonfour ofthemostmajoreconomicmarkets:themarketfordebt securities,themarketforequitysecurities,andthemarket forcommodities.stockmarket,currencymarketandcommoditymarket.

ProblemAnalysis

Themarket’sbiggesttreasureiscloselyalignedtoadequateawarenessofmovementsofpricesandothermarketrelatedfactorswhichhelptocombattheadverse effectsofvariousmarketrisks.Salientpotentialinthe

50

marketisduetoalackofskillsorunderstandinginrecognizingfutureestimations,thetreasurehasbeenkept untapped.Therefore,aframeworkisneededtomeasure marketriskadequatelysothatthelevelofanyuncertainty canbereducedtothebarestminimum,ifnottotallyeradicated.InNigeria,alackofknowledgeofthegenuine marketsituationhasresultedinunnecessarilyhighinflationandshortagesofgoodsandservices.Itmustbenoted thatmanyriskassessment/managementstandardshave beencriticizedforprovidingnoquantifiableimprovement inmarkethazards,whiletrustinestimatesandjudgmentsappearstobeincreasing.Furthermore,thevariance, covariance,andhistorySimulationtechniquestocalculatingVaRallpresumethatpreviouscorrelationsarestable andwillnotalterorbreakdowninthefutureorunder marketstress(LangrinandRoach,2009).Theduration marketturmoilandperiodsofseverevolatilitymakethis assumptioninappropriateashistoricalcorrelationstends tobreakdown,especiallyduringfinancialcrisesIncontrasttoanupwardgoingmarket,allindustrialsectionsface alargeincreaseincorrelations.Thisphenomenaisreferred asasymmetrycorrelation/dependencehasgreatimpacts onthemarketvalue.

Theamountofmoneythatmightbelostasaresultof marketriskcanbecalculatedinavarietyofways.Theconventionsofvalueatrisk(VaR)modelsarewidelyknown andrecognizedinshort-termriskmanagementpractice.It mustbenotedthatVaR’saccuracyisconstrainedbyavarietyoflimitingassumptions.Itisassumedthattheportfolio compositionoftheportfoliosbeingmeasureddoesnot varyovertime.Infact,becauseweliveinadynamicworld, thislimitingassumptionmaybeconsideredinappropriate overlongertimehorizons,asmanyofthepositionsinthe portfolioormarketvaluesmayhavechanged.Theonly thingconstantischange.

Oneofthemajorproblemsininsurancebusinessisclaim settlement.ItisofnonewsthatmanyinsurersinNigeriaareorhavebeeninvolvedinlitigationsasaresultof non-settlementofclaims.Thissituationhasreallyaffected theimage/growthoftheindustrynegatively.Thisproblemariseswhenaclaimoraninsurancemarketriskwhich hasa100%probabilityofoccurringisignoreddueto lackofidentificationabilityorwrongusageofunderwritingriskmodel(suchasusingindividualunderwriting riskmodelforcollectiveunderwritingriskmodeland viceversa).Theriskandreturnofinsurancebusinessis directlyrelated.Thatis,thehighertheriskthehigheristhe likelihood/probabilityofthereturns.Itmaybetoorisky toinvestinsurancefundsonsecuritiesofhigherinterest returnsbecausehigherreturnsalsogohand-in-handwith highsecurityvolatilitywhichcanleadtolossofinvested funds.Lossofinvestedfundswillinturnaffectinsurance claimsettlement.Therefore,thereisaneedtobalancethe discrepancybetweentheactuarialandthefinancialmethodsofassessingandmeasuringinsurancerisks,especially whendealingwithsingleandgrouppolicies.

ObjectiveoftheStudy

Tomanagemarketsriskseffectively,oneneedstocriticallyidentify,actuariallyassessandcarefullyprioritize theidentifiedandassessedrisksthroughtheusageof anappropriatemarketriskmodel.Thegeneralobjective ofthisstudyistoanalysetheperformanceofdifferent modelswhichattempttosolve,measureandmanagevariousmarketrisksinordertoderiveestimatesorparameterswhichappropriatelyaiddecisionmakingprocessand reduce/predictwhatthepotentialriskscenariocouldbe. Therefore,thespecificobjectives,whichmustbeattained inthecourseofthisresearchwork,arelistedbelow.

• Todevelopaframeworkthatwillmakefuture estimates/forecasts/predictionsmorereliableand authentic.

• Toexhibithowacertainchangeininterestlevelscan impactonthemarketvalue.

• TomodifyconceptsofVaRModelinordertoaid informeddecisionmakingoverlongerperiodhorizons.

• Toderiveanappropriatemarketriskmodelfor asinglepolicyandtheoverallmarketriskfor agroupofpolicies,whosevolatility/deviation(of expectedclaimvalueandactualclaimincurred)will beinsignificant.

ResearchQuestions

Thefollowingresearchquestionsmustbeansweredina specificmannerinthisstudy.

• Howcanwemakeourstatisticalestimatestomeasuremarketrisksadequatelyinordertoreduce uncertaintylevelstothebarestminimum?

• Howcandurationperiodsofhighvolatilityandmarketturbulenceduringfinancialcrisesaffectmarket value?

• Howdoothermoments(thirdandfourth)helpto modifyVaRMethodofriskmeasurement/modeling?

• Howcanwestrikeabalancebetweentheactuarialandthefinancialmethodsofassessinginsurance marketrisksinordertocombatclaimsettlement problems?

ScopeandLimitationoftheAreaofStudy

Thisstudygenerallyfocusesontheanalysisofvarious modelsthatattempttoproffersolutionstomarketrisk problems.ItsscopeshallbelimitedtosituationsinNigerianmarkets(financialandinsurance),althoughreferences willbemadetoglobalsituations.Themajorlimitation envisagedinthisstudyislikelytobedifficultyingetting appropriate/relevantdataand/orunwillingnessofmarketoperatorstoreleasesensitivedataforanalysisforthe fearoffallingintothehandsofcompetitorsorleakingtheir

MeasurementModelsforMarketRiskManagementinNigeria 51

financialoperations/informationtowisecustomerswho canusesuchinformationagainsttheminmakingmore profitforthemselveswhichleadstonoorlowprofitfor theservicingoperators.

SignificanceoftheStudy

Thereisneedtocontrolvariousmarketrisksandbalance thepossibilityofgains.Thedynamicinterdependencies ofmarketrisksaredeterminedbytheoptimalmanagementofeachtypeofmarketrisksearliermentioned, takingintoaccountthemodels/systemsofrisksandpotentialfortransformationoftherisks.Thegreatdegreeof unpredictabilityinthemarketinwhichfirmsoperateis asignificantelementdrivingthefastgrowthofriskmeasurementandmanagement.Thefindingsofthisstudywill beextremelyusefultomarketparticipantsandstakeholders.Itmayalsoserveasanassettostudents/lecturersand othersintherelatedfieldofstudy.Finally,policymakers, investors,andthegeneralpublicwillgreatlybenefitfrom theresearch.

THEORETICALOVERVIEW

AccordingtoNavarrete(2006),Thevariancecovariance andhistorysimulationtechniquestocomputingVaRare effectivealternativestoMonte-Carlosimulationsforall specifiedmultivariatemodels.Theyenhancethevariance covariancematrixestimation.TheGaussiancopulaand wellspecificmarginalmaybeusedtoprovideaforecast ofassetdistributionusingMonte-Carlosimulation.Allowingforempiricalfeaturesinstockreturns(suchasautoregression,asymmetricvolatility,skewness,andkurtosis) inthemodellingprocessisthoughtcrucial.Negatively basedcorrelationsandvariancecovariancessufferfrom substantialestimateerrorsifthesequalitiesarenottaken intoconsideration.Fluctuationsinmarketpricesandother marketfactorsplaymajorroleonthemarketvalueofan investment.Oneofthemostsignificantandunderappreciatedaspectsofmarketriskmonitoringandmodellingis modelrisk.Itcastsalongshadowoverallaspectsofrisk management,andprudencedictatesthatwetreatitseriously.Werelyondataandindexestoestimatevolatility.We shouldcontinuetoquestionourselveswhatwouldhappen ifourassumptionsweretocollapse.

FinancialRisk

AccordingtoAndreJ.Blaauw,GroupChiefRiskOfficer ofUnitedBankforAfricaPLCin2009,marketriskcan occurwhenbanksacceptfinancialassetssubjecttomarketpricevolatilityascollateralforloans.Poormarket riskmanagementprocedurescanswiftlyresultinconsiderablelossesinturbulentmarketconditions,aswell ascatastrophicinstitutionalcollapseinextremecases. AccordingtoKallestrap(2012),theglobalmarketcrisishas

revealedthatmarketsarebecomingmoreinterconnected, complicated,andunpredictablethanpreviouslythought. Themanagementofmarketriskishighlycomplexbutsize ofthemarketriskexposurecanbereducedinsuchaway toallowbanksavoidpotentiallossesthatcanbeincurred underextremeandadversemarketvolatility(Hubbard, 2009).

Financiallossesasaresultofmarketvolatilityhave resultedinagradualdeteriorationinoureconomicbasis andforeignreserves.Thishasalsodiscouragedsmalland medium-sizedbusinesses,whichareoneoftheprimary driversofanyeconomy.Inbanking,theknowledgeof marketrisksandhowtomodelthemareverycrucialto successfulbusinessoperations.EnyiandAdebawo(2014) suspectedthatthe2008financialsectorcollapseinNigeria wascausedbyanincorrectriskassessmentandexposure model.Portfoliotheoryandthecapitalassetpricemodel shouldbereviewedperiodicallyinordertoguideinvestors onriskoflossoffinancialvalueduetofluctuationsin marketpricesandotherfactorsasmanyformsofmarket risksarise.Bankruptcyisthemostdramaticexampleof marketriskmanagementfailure.Derivingvarianceparametersfrompastmarketratedatamightaidinestimating theprobableriskscenarioforaparticularstatisticalconfidencelimit.InterestrateriskisdefinedbyEltonand Gruber(1995)asthelikelihoodthatchangesininterest rateswillhaveanegativeimpactonacertainfinancial instrumentorportfolio.AccordingtoEmilia(2010),the mostoftenutilisedmethodsforanalysingbankinterest rateriskincludediscrepancyanalysis,simulationmethods, anddurationmethods.TheDiscrepancyAnalysisMethod measuresthedifferencebetweeninterest-sensitiveassets andliabilitiesoveraspecifictimeperiod.Whentheamount oftheassetsbeingexaminedduringaspecifictimeexceeds thesumoftheliabilities,thebankhasapositivedisparity. Ifabankhasanegativedisparityandinterestratesrise, netinterestincomewillfallsincehigherinterestrateshave moreobligationsthanassets.

Inthesamevein,revenueswillalsodecreaseifthebank hasapositivedifferenceandinterestratesfall.Therefore, thediscrepancyhelpstoshowtherisktowhichinterestincomeisexposed.Unfortunately,thismethoddoes notrecordchangesinpaymentdatesthatmayoccurasa resultofchangesintheinterestenvironment.Thismethod issuitablewhenthereisidenticalmovementofinterest rates.Anewmodelisrequiredduetothenon-similar behaviorofinterestratesacrossdifferenttimeperiodsin dynamicmarkets.Thesimulationapproachisbasedonthe ideathatinterestratefluctuationsaredynamicratherthan static.Monte-Carlosimulationisusedasastandardfor theevaluationofportfolios,andincorporatesmanymarketvariables.Butinorderforthismodeltobereliable,itis necessaryateachcalculationtoperformasufficientlylarge numberofrepetition/recalculation.Thisisaverydemandingtaskintermsofcomputingpower.Duetothedemands andcomplexityofthissystem,itissometimesdifficultfor

52 AdeolaKudiratBanjoandOmotayoJohncallyAbere

abank’smanagementtokeeptractofwhattheirriskmanagersareactuallydoing

Profit/lossisuncertainduetomovementofthemarketfactors.Therefore,aframeworkisneededtomeasure financialriskeffectively.Berkowitz(2001)believedthat thetraditionalsolutionassumesamean-varianceframework.Inotherwords,weestimatemarketrisksinterms ofthemeanandvariationorstandarddeviationofprofit/ loss.Nonetheless,theassumptionofnormalityhasitslimitationsasthedistributionrequiresonlytwoparameters (i.e.firstmoment(mean)andsecondmoment(variance) (DowdK,2002).AccordingtoEltonandGruber(1995), Portfoliotheory,forexample,assumesthatthebehavior ofthereturnsonanygroupofassetscanbecharacterized intermsofanexpectedreturnvectorandavariancecovariancematrixthatdescribestherelationshipbetween individualreturns.Aspreviouslyindicated,oneofthe mostseriousVaRhasthedrawbackofnotbeingsubadditive.Tosolvethisdifficulty,wemustfirstexplainthe conceptofsub-additivity.Ariskmeasurep(˚u)issaidtobe non-sub-additiveifthetotalofthemeasuredrisksofpositionsXandYislessthanorequaltothetotalofthevarious positions’estimatedriskswhenexaminedindependently, i.e.

Sub-additiveindicatesthatthesumofindividualhazardsdoesnotraisetotalrisks.Ifrisksaresub-additive, combiningthemwilloverestimatecombinedrisk,meaningthatthesumofriskscanbeusedasaconservative estimateofcombinedrisk.Thisenablesdecentralizeddecisionmakinginsideafirmsinceasupervisormayalways usethetotaloftherisksoftheunitsreportingtohimasa cautiousriskassessment.Iftherisksarenotsub-additive, however,addingthemtogetherleadsinanunderestimate oftheoverallrisk,makingthesumofhazardsuselessas ariskmeasure.Wewantourriskassessmentstobeconservativelyorimpartiallybiasedinriskmanagement.Asa result,foranyriskmeasure,sub-additiveisahighlydesirableattribute.Unfortunately,VaRisseldomsub-additive, anditcanonlybeifwemaketheimplausibleassumptionthatProfit/Lossorreturnsareslightlymorewidely orconsistentlydistributed.Inaddition,bymeetingthe sub-additivecriterion,coherentriskmetricsaccuratelyrepresentdiversificationeffectsandsimplifydecentralized decision-making.

Forinstance,ifXandYaretworiskpositions’futurevalues,ariskmeasurep(·)issaidtobecoherentifitsatisfies thefollowingproperties:

Where anynumber

Thesub-additivepropertyhasalreadybeenexplained. Thehomogenousandmonotonouspropertiesareplausibleaprioricriteria,andcombinedtheyindicatethatthe functionp( )isconvex.(Scaillet,2000).Lastbutnotleast theconditionspecifiesthataddingafixedamountnto thepositionwillreduceriskbythesamevolumesince theend-of-periodportfoliovaluewillgrow.Thehighestpredictedlossonacollectionoflossvaluesandtheir associatedprobabilitiescanbeviewedasaconsistentrisk indicator.

Riskmodellingusesanumberofstrategiestoanalyzea portfolioandanticipatethepotentiallossessustainedfor avarietyofhazards.Econometricapproachesareusedin financialriskmodellingtoassesstheaggregateriskina financialportfolio(AlmgrenandChriss,2002).Manybig financialintermediaryorganizationsuseriskmodellingto assistportfoliomanagersindeterminingtheamountof capitalreservestokeepandtosteertheirpurchasesand salesofvariousclassesoffinancialassets.Previously,risk analysiswasdonesubjectively,butnowthatsophisticated computingtoolsisavailable,quantitativeriskanalysiscan bedonerapidlyandeasily.

AccordingtoMandelbrotandRichard(2006),modelingchangeswithlimitedvariancedistributionsisknown tobeineffective.Theydiscoveredthatpricechangesin financialmarketsdonotfollowaGaussiandistribution. Largechangesupordownaremorecommonthanwhata Gaussiandistributionwithanassumedstandarddeviation wouldpredict.Furthermore,thefairvalueorfuturecash flowsofaspecificfinancialinstrumentmayfluctuatedue tochangesincurrencyexchangerates.Understandingand managementofriskincurrencyexchangeratevolatility canbeverycomplicatedbecausethereexistsanimperfect correlationbetweencurrencyexchangeratesandinterest marketrates(Alexander,2001).

InsuranceRisk

Inacompetitiveinsurancemarket,themarketriskload indicatesequilibriumpricing(Zhang,2006).Themarket riskloadandtheinsurerspecificriskloadcanbecalculatedindependentlyfromthetotalriskloadforapolicy. Throughpremiumpayments,uncertaintyoffuturelossis eliminatedorreducedbytheinsured.Thepremiumscollectedbytheinsurerserveastherewardfortakingthe insuredrisk.Therefore,thepremiumsserveasthecostof theinsurancemarketrisk.Theactuarialestimateofinsurancemarketriskhasevolvedsignificantly.Accordingto classicpremiumprinciples,ariskloadisdeterminedbythe volatilityoftheinsuredlossitself,andvolatilityisquantifiedbythevarianceorstandarddeviation.Accordingto Zhang,thesemethodologiesareunsatisfactorysincethey

MeasurementModelsforMarketRiskManagementinNigeria 53
P(X + Y) < P(X)+ P(Y) (1)
P(X)+ P(Y) ≤ P(X + Y) (sub-additivity)(2) P(tX)= tP(X) (homogeneity)(3) P(X) ≥ P(Y),ifX ≤ Y(monotonicity)(4) P(X + n)= P(X) n(risk-freecondition)(5)
n =
t = positivenumber

quantifytheriskoftheinsuredbutnottheriskofthe insurer.

Becausetheinsurancemarketiscompetitiveandmarketparticipantsarerationaldecisionmakers,aneffective insuranceriskmodelshouldaccountnotjustthevolatility ofthepolicylossbutalsotheinsurancecompany’sportfolioandmarketcompetitiverisk.Thefrictionalcostof capitalisoneoftheriskfactorsassociatedwithaninsurer’s capitalstructure.Asaresult,it’sappropriatetodividethe insurer’stotalriskintotwocategories:marketriskand specificrisk,whichmaybequantifiedseparately.Kato andYoshiba(2000)discoveredthattheriskmodelreflects twokeypricingperspectives:actuarialandfinancial.The risk/returnoftheinsurancecompaniesisaddressedunder actuarialviewwhilethefinancialviewexaminesportfolioofshareholders.Theactuarialtechniquehandlesmutual selectionbutpayslittleconsiderationtothewell-beingof theshareholders.Thetwomodelsworkwelltogether.

BacktestandStresstest

Backtesting

Backtestingmightprovideuswithadditionalinformation regardingtheappropriatenessorinsufficiencyoftherisk modelbeingutilized.Thisprocedurehelpstoevaluatethe marketriskmodel.Inordertodoso,acertainVaRconfidencelevel,specificmarketinstrumentpositions,anda specificcollectionofmarketprice/returndatamustbesupplied.Whenevaluatingmarketriskmodels,backtesting iscrucial.Itnecessitatestheuseofquantitativestatistical approachestodeterminewhetherornotamarketevaluationmodelisacceptable.Itmaybeusedforthreedifferent things.Thefirstistoallowtheconclusionthattheevaluationsarestatisticallyconsistentwiththerelevantoutputs tobereached.Italsoassistsriskmanagersindetecting flawswithintheirriskmodels.Finally,itaidsinranking theperformanceofseveralalternativemarketmodels.The validityofthevalueatriskmodels,likethatofothermodels,shouldbeverifiedonaregularbasis.

Stresstests

Inthesimilarvein,stresstestsarerequiredtoverify whetherafinancialorganizationisstrongenoughtowithstandmajormarketshocks.Becausepreviousvolatility maynotholdinthefuture,wemuststress-testhistoricalparameterstoassuretherobustnessofmaximumloss estimations.Thisisbestaccomplishedthroughsimulation, inwhichaportfolioisrunthroughalargenumberof probablemarketsituations(JamshidianandZhu,1997). Thetestsassesstheimpactofunusual,butnotimpossible,marketsituationsonrevenueorfinancialpositions. Indoingso,adecisionshouldbemadeastowhetherto stressonlyonevariableovertimeoragroupofnumerousvariables.Thestresstestfindingscanbeutilizedfor

avarietyofpurposes,includingriskreportingandidentification,risklimitestablishment,capitalallocation,and premiumadjustment.Withstresstests,theeffectsofexceptionaleventsinthemarketareanalyzed.

METHODOLOGYANDMODEL

SPECIFICATION

Introduction

Thissectiondescribeshowdataandresourcesforthestudy wereacquired.Itstatessomeproblemsencounteredinthe processofdatagathering.Italsofocusesonthemany modelsandmetricsthatwillbeusedtoprovideempirical supportforthestudy.

ResearchDesign

Designreferstotheplanandstrategyofinvestigation conceivedsoastocontrolvariances(Asika,2004).Data collectingisnotconfinedtoasinglemethod.Personal interviewsand/orbusinessobservationswereconducted withspecialists,acquaintances,andfamilymembersinthe relevantorganizations.Themajorityofthesecondarydata camefromtheinternet,periodicreports,forums,articles, newspapers,textbooks,paperpresentations,journals,and otherpublicationsfrombusinessorbusiness-relatedorganizations.

PopulationoftheStudy

ThisstudyfocusesontheanalysisofNigerianmarketrisks throughtheuseofdifferentmodels.Thestudy’sgeographicalscopeisnotrestrictedtoNigerianbusinessesbutmay alsobeappliedtobroaderscenarios.

SampleSizeoftheStudy

Basedonthemodels,analyseswillbecarriedoutoninsuranceandfinancialrisks.Furthermore,inorderforthis studytobearesoundingsuccess,themajoranalysiswillbe doneonthelendinginterestratesinNigeria(from1970to 2018)obtainedfromtheCentralBankofNigeria.Thefocus istoderiveestimatesforfutureinterestratessothatthe marketplayerscanposition/preparethemselvesagainst adversemovementsoftheserates.Thesamplesizeisdeterminedbythesizeofthepopulationstudied.

ProblemsEncountered

Themainissueinthisstudywasfinancialfirms’unwillingnesstoprovidetheirdataforresearchpurposes.Some claimedthatthemainreasonwastopreventcompetitors fromgainingaccesstotheirsecretsthroughdetailedanalysisoftheirrawdata,whileothersclaimedthataletteror directivefromtheofficeofthe“GovernorofCentralBank

54 AdeolaKudiratBanjoandOmotayoJohncallyAbere

orPresidentoftheFederalRepublicofNigeria(GCFR)” wasrequiredbeforesensitivedatacouldbereleasedfor researchpurposes.Thiscauseddelayinthedurationof thestudy.Also,figuresofthemajordataobtainedfrom differentsourceswereslightlydifferentformeachother. Forinstance,alendingrateof16.23%inaparticularyear fromonesourcecouldbe16.22%inanothersource.This mightbeduetoapproximationorfluctuationproblems. Throughproperlyconstructedandpreciselyformulated models,stepsweremadetolimittheconsequencesofthis toabareminimum.Nonetheless,thequalityofdatacollected/usedwashighlypraisedandsuggestedforfuture researchersorpersonsdirectlyinvolvedinthestudyby concernedfansofthisfieldofstudy.

ModelSpecification

Thissectiondescribesthemodelsthatwillbeutilisedon thevariousmetricstoprovideempiricalevidenceforthe study.

Financialrisk VALUEatRISK(VaR)MODEL

ArandomvariableXisgivenatypicaldistribution,which mean µ andvariance σ2 (orstandarddeviation σ)forthe probabilitythatXtakesthevalue x,f (x)obeysthefollowingprobabilitydensityfunction(pdf) f (x)= 1 σ√2π exp 1 2 [(x µ)/σ]2 (6)

Where x isdefinedover ∞ < x < ∞ Ifthemean(µ)=oandthestandarddeviation(σ)=1, thisisknownasastandardnormal

DURATIONMODEL

Tocalculatetheduration,oneneedstocalculatetheNet PresentValue(NPV)first.

Thesummationisthendividedbytheinstrumentvalue inordertoarriveattheduration.

NPV = n ∑ i=1 Pi (1 + r)i (7)

Where i = yearofpayment; P = principaltobepaid; r = interestrate.

LEASTSQUAREMODEL

Table 1 willbeanalysedbyLeastSquareMethodwhich willgiveapracticalestimateofthetimetrend.Itis

assumedthatthetrendislinear.Hencetheequationofthe lineartrendisdefinedas:

ˆ Y = a + bX (8)

Where: X = transformedtime(t); ˆ Y = theestimatedtrendvalueforagivenperiod; a = valueofthetrendlineattimezero(i.e.@t = 0); b = theslopeofthetrendline(i.e.thechangeinYperunit changeintime).

Theconstants a and b canbecalculatedusing:

b = n ∑ XY ∑ X ∑ Y n ∑ X2 (∑ X)2 (9)

a = ∑ X2 ∑ Y ∑ X ∑ XY n ∑ X2 (∑ X)2 (10)

At ∑ X = 0;

b = ∑ XY ∑ X2 (11) a = ∑ Y n (12)

StandardErroroftheEstimate(Se)

Se isameasurethatassessesthereliabilityoftheresult obtained.Itmeasuresthevariabilityorscatteringofthe observedvaluesaroundtheregressionline.Itisevaluated usingtheformulabelow.

Se = ∑ (Y Y)2 n 2 (13)

Insurancerisk

Assuminganinsurancemarketcontains N policieswith randomlosses x1,x2,... xN,wherethemarketpremiumfor policy i is Pi.

Thepremiumwillbeinvestedinariskfreeassetwith rateofreturn rf.If Ri istherateofreturnonpremium,the meanandthecovarianceoftherandomreturnsare:

µi = E(Ri )=(1 + rf) E(Xi) Pi (14)

σij = Cov(Ri, Ri ) = cov xi pi , xj pj = 1 Pi Pj cov(Xi Xj ) (15)

MeasurementModelsforMarketRiskManagementinNigeria 55

Table1. HistoricallendinginterestratesinNigeria(1970–2018). YearInterestRate(%)YearInterestRate(%)YearInterestRate(%)YearInterestRate(%) 19707198210.25199421200616.90 19717198310199520.18200716.94 19727198412.5199619.74200815.48 1973719859.25199713.54200918.36 19747198610.25199818.29201017.59 19756198717.5199921.32201116.02 19766198816.5200017.98201216.79 19776198926.8200118.29201316.72 19787199025.5200224.4201416.55 19797.5199120.01200320.48201516.85 19807.5199229.8200419.15201616.87 19817.75199336.09200517.95201717.88 201818.00

Source:CBNStatisticalBulletin(www.cbn.gov.ng).

DATAANALYSIS,PRESENTATIONAND

INTERPRETATION

InsuranceRisks

FromtheEquations(14)and(15)statedinsection“Insurancerisk”,itiseasytomodeltheriskforasinglepolicy i andtheoverallmarketriskforall n policies. Theriskof ith policycanbederivedbymultiplyingthe premiumdiscountfactor(i.e. Pi (1+r f ) )byitsexpectedvalue inEquation(14). (16)

Also,for n policies,theoverallmarketriskloadis; (17)

FinancialRisks

VALUEATRISK(VaR)MODEL

InlinewithEquation(6),Figure 1 isderivedandexplained below.

INTERPRETATION

Accordingtothegraph,it’smorelikelythattheconsequenceswilloccurtowardsthemean µ.Thestandard deviationdeterminesthedistributionofprobabilitymass aroundthemean .Toputitanotherway,thehigher

thestandarddeviation,themorescatteredtheprobability mass.

Asaresult,thepdfissymmetricaboutthemean.The randomvariable X isaslikelytotakeaparticularvalue x µ astotakethecorrespondingnegativevalue (x µ) Thepdftailsawayonbothsides,withtheleft-handtail correspondingtoextremelylowrandomrealizations.

Variables,whiletheright-handtailcorrespondstohigh realizationandmorelikelyoccurrenceofrandomevent. Assumingaparticular x-value(say 1.645)ischosenfrom anormaldistributiontable,wecanregardthisvalueasa profitof 1.645 (left-handside)orlossof 1.645 (right-hand side).Invariably,itmeansthatthereisa5%(0.05)probabilityofmakingalossor95%(0.95)probabilityofmaking profit.

Thevalue 1.645 canthenbedescribedasthevalueatrisk (VaR)at 95% confidencelevel.

SUB-ADDITIVITYOFVARMODEL

Aportfoliooftwoshortbetsonvery-out-of-the-money binaryoptionsisagoodcounter-examplethatshowsVaR’s sub-additivity.Assumethateachbinarychoicehasa 6% probabilityofapayoutof ₦1.5manda 94% probabilityof apayoutof ₦0.

Therewardsarebasedonseparatelydistributedunderlyingvariables,thereforethepayoffononebinaryoption isindependentofthepayoutontheother.IftheVaRconfidencelevel(cl)issetto95%andtheholdingperiodisset totheamountoftimebeforetheoptionsexpire,eachpositionhasaVaRof0atthe95%level.Ifwecombinethetwo positions,however,theprobabilityofaN0payoutfallsto lessthan 95% andtheVaRispositiveandequalto ₦1.5m.

Asaresult,theVaRofcombinedpositionsislargerthan thesumoftheVaRsofindividualpositions,asshown inEquation(2).Therefore,VaRisnotsub-additive.The

56 AdeolaKudiratBanjoandOmotayoJohncallyAbere
Pi (1 + r f ) Xµi = Pi (1 + r f ) X (1 + rf) E(Xi ) Pi = Pi E(Xi ) 1 + r f
PN E(XN ) 1 + r f
σ

Figure1. TheNormalProbabilityDensity.

Table2. TheVaRofindividualpositions. PositionXPositionY

(₦’m)PayoutProbability(₦’m)PayoutProbability 1.50.06 1.50.06 00.9400.94 VaRat95cl1.00VaRat95cl1.00

Table3. TheVaRofcombinedpositions. Payout

(₦’000,000)CalculationProbability 30.062 =0.06X0.060.0036 1.5(0.06)(0.94) + (0.94)(0.06)0.1128 = 2(0.94)(0.06) 00.942 =0.94x0.940.8836 VaRat1.00 confidencelevel(cl)

illustrationofthegivenexampleisexplainedintheTable 2. Furthermore,VaRisnotsub-additiveandsoisnotaconsistentriskmeasure.Asaresult,anotherideaforgauging marketriskistheconditionalvalue-at-risk(CVaR).Thisis sub-addictiveandcoherentforgenericlossdistributions, includingdiscretedistributions.

However,thepresumptionofnormalcyhaslimitations asthedistributionrequiresonlytwoparameters(i.e.first moment(mean)andsecondmoment(variance)(DowdK, 2002)).Otherinstances(thirdandfourth)canbecrucial. Thethirdinstantindicatesthedistribution’sasymmetry. Thiscausesskewness.

Skewness = E(x µ)3 σ3 (18)

Asymmetricornormaldistributionhasaskewness coefficientof0,whileanasymmetricdistributionhasa skewnesscoefficientofnon-zero.

Ifthedistributionisskewed,wemustaccountfor itsskewnessifwearetoappropriatelyestimateitsrisk

probabilities.Thefourthmoment(kurtosis)parameter indicatesthefatnessofthedistribution’stails.

Kurtosis = E(x µ)4 σ4 (19)

Thetailsofthedistributionwillbethesameasthenormaldistributionifthekurtosisparameterissetto3.A kurtosisvaluegreaterthan3showsbroadertails,implying thatanextremeevent(i.e.lossseverity)ismorefrequent butlesslikelytobehuge.Atailvalueoflessthan3suggeststhatextremeoccurrencesarelesslikelytobegreater thanexpected.Theextremeeventsherecaneitherresultto gainorloss.Exceptwhendealingwithasymmetric(i.e. zero-skew)distributionwithakurtosisof3,thenormalityassumptionisunsuitableandcanleadtosubstantial mistakesinmarketriskanalysis.Becauseofitsstrongrelationshipwithsomeofthemostprominentwaystofinancial riskmeasurement,itiscriticaltoverifyfornormalcy.For example,VaRcoupledwithdailymarketriskmonitoring andcontrol,captherisk/lossatacertainlevelofconfidence.

Implementingvolatility-basedlimits,whichadjustthe sizeofpositionlimitsautomaticallyinresponsetorising marketvolatility,isagoodwaytoguaranteemarketrisks arecappedatanypre-determinedlevel.

DURATIONMODEL

InaccordancewithEquation(7),imagineabankpurchases a5-yearbondwithanominalvalueof$2000andanannual interestrateof10%.

NPV = 5 ∑ i=1 $2000 (1 + 0.1)i = $7,581.57

Duration(D) = $7,581.5 =

INTERPRETATION: Theperiodof3.79yearsisameasure oftheaveragelife-cycleoftheinterestsensitivityofthe 5-yearbond.

MeasurementModelsforMarketRiskManagementinNigeria 57
$2,000
3.79years

Table4. Primelendingrateanalysis(2010–2018).

YearInterestRate(Y)TransformedTimeTrend(X)X,YX2 Y (Y Y)2 201017.59 4 70.361616.529331.125014 201116.02 3 48.06916.65450.40259 201216.79 2 33.58416.779670.000107 201316.72 1 16.72116.904830.034163

201416.5500017.030.2304

201516.85116.85117.155170.093127 201616.87233.74417.280330.168373 201717.88353.64917.40550.22515 201818.00472.001617.530670.220274

∑ Y = 153.27

∑ X = 0 ∑ = 7.51 ∑ 2 = 60 ∑ = 2.499198

Table5. Primelendingrateanalysis(2011–2017).

YearInterestRate(Y)TransformedTimeTrend(X)X,YX2 Y (Y Y)2 201116.02 3 48.06916.18250.026406 201216.79 2 33.58416.392140.15829 201316.72 1 16.72116.601790.013975 201416.5500016.811430.068345

201516.85116.85117.021070.029265 201616.87233.74417.230710.130115 201717.88353.64917.440360.193286

∑ Y = 117.68

∑ X = 0 ∑ X,Y = 5.87 ∑ X2 = 28 ∑ = 0.619682

Table6. Primelendingrateanalysis(2012–2018). YearInterestRate(Y)TransformedTimeTrend(X)X,YX2 ˆ Y (Y Y)2 201216.79 3 50.37916.42250.135056 201316.72 2 33.44416.646430.005413 201416.55 1 16.55116.870360.102629 201516.8500017.094290.059676 201616.87116.87117.318210.200896 201717.88235.76417.542140.114147 201818354917.766070.054723

∑ Y = 119.66 ∑ X = 0 ∑ X,Y = 6.27 ∑ X2 = 28 ∑ = 0.672539

Unfortunately,thismethoddoesnotrecordchangesin paymentdatesthatmayoccurasaresultofchangesinthe interestenvironment.Thedurationmethodforresolution displaysthetimeandquantityofcashflowsreceived beforetheinstrument’scontractuallystatedmaturityterm. Thelongerthematurityperiodandthewaitforthenext changeintheinstrumentprice,thelowerthepayments receivedaheadtomaturity.Becausetheperiodislonger,a changeininterestrateshasahigherinfluenceoneconomic value.

LEASTSQUAREMODEL

Inthissection,Table 1 wasbeanalysedbyusingLeast SquareModelinrelationtoEquations(8)to(13)already statedintheprevioussection.

FromEquation(12), a = 153.27 9 = 17.03

UsingEquation(11), b = 7.51 60 = 0.12517

FromEquation(8), Y = 17.03 + 0.12517(20)

FromEquation(13), Se = 0.5975 (21) Y = 16.8114 + 0.2096X (22)

58 AdeolaKudiratBanjoandOmotayoJohncallyAbere
ˆ
X,Y
X
ˆ
ˆ
ˆ

Table7. Comparisonofresults. DecisionStandardProbability

TableEquationError(Se)ofError

4 Y = 17.03+0.12517 X 0.597535.70%

5 Y = 16.8114+0.2096 X 0.352012.93%

6 Y = 17.0943+0.2239 X 0.366813.45%

Se = 0.352(23) Y = 17.0943 + 0.2239X (24)

Se = 0.3668(25)

FromTable 7,thebestequationtobeusedfortheestimatesoffuturelendinginterestrateis Y = 16.8114 + 0.2096 X asderivedfromTable 5 becausethestandarderrorand thechanceoferroraretheleast.

FINALRESULT

Table8. Estimatedlendingrates(2023–2025). YearXInterestRate(%) 2023918.70 20241018.91 20251119.12

CONCLUSIONANDRECOMMENDATION

ConclusionandSummary

Anyfinancialornon-financialentitywithaportfolioof financialassetsisexposedtomanytypesofrisksand,as aresult,shouldapplyriskmeasurementandmanagement strategiestooptimizethewayariskistaken.Asaresult, theriskoflargeeconomiclossesorevenbankruptcyis reduced,andtheinstitutionsbecomemorecompetitive. Oncetheestimatesofthedistributionoffuturechangesare available(e.g.asshowninTable 8),toestimatetherisk, you’llneedtouseariskmeasurement.Itisalsonecessary tovalidatethemodelthroughback-testing(asshownin Table 7).Theriskattachedtoaparticularinvestmentis relatedtothereturnonsuchinvestment.Managementof theriskcanbeeffectivelyattainedwhenhistoricalinformationreflectsthecurrentmarketprocessofsecuritiesand insiderprivilegeinformationispubliclyavailable.Risks developnotjustasaresultofchangesinmarketfactors, butalsoasaresultofactionstakenbymarketplayerswho arewillingtotakerisks(i.e,riskseekers),transferrisks(i.e, riskaverters)orareriskindifferent(i.e,riskneutrals).To havepreciselyrecordedamountsandparameters,market riskrequiressufficientmanagementandanalyticalsystemstoanalyzemajorriskfactorsandtoutilizecommonly

acceptedfinancialconceptsandproceduresforriskmeasurement.

Recommendations

Facedwithcontinuouslychangingmarketrudimentsand increasingregulations,financialinstitutions(i.e,bankand non-bank)needtoregularlyreviewandoptimizetheir models,processesandsystemsformeasuringandmanagingrisks.Thiswillbefollowedbyaplannedandcosteffectiveuseofresourcestoreduce,monitor,andmanage thelikelihoodorimpactofunanticipatedoccurrences,or tooptimizetherealizationofpossibilities,sothatrisk uncertaintydoesnotdetractfromtheendeavor’scommercialobjectives.Variousfinancialorganizationsshouldhave suitableprocessesinplacethatreflecttheirmarketrisk exposure.

InagreementwithBanjo(2019),avoidingmarketrisks andotheruncertaintieswithnegativeeffectsisacommon strategyformanagingmarketrisksandotheruncertainties withnegativerepercussions(i.e,riskavoidance);reducingthenegativeeffect/probabilityoftherisks(i.e,pre-loss andpost-lossriskminimisation);transmittingallorpart ofthedangertoathirdparty(insurance)(i.e.risktransfermechanism);andevenkeepingsomeoralloftherisks’ potential/actualrepercussions(i.e,riskretention).

Therefore,choiceofamodeldependsonthepositions forwhichthemodelistobeused;andtheuser’sriskmanagementcapacitiesandtechnicalpossibilities.

REFERENCES

Alexander,C.(2001). MarketModels: AGuidetoFinancialDataAnalysis. JohnWiley&Sons,Chichester.ISBN9780471899754.

Almgren,R.,andChriss,N.(2000).Optimalexecutionofportfoliotransactions. JournalofRisk3(Winter),5–39.

Ama,G.N.(2009).CorporateRiskReportingPracticesandtheirDeterminants:AstudyofSelectedQuotedFirmsinNigeria.Nigeria ResearchJournalofAccountancy(NRJA),1,81–96.

Anghelache,C.,Voineagu,V.,Culetu,D.,andBaltac,A.G.(2013).Methods,TheoriesandModelstoMeasureMarketRiskofthePortfolioof Shares. RomanianStatisticalReviewnr.8.

Asika,N.(2004). ResearchMethodology:AProcessApproach.Mukugamu &BrothersEnterprises,Lagos.

Banjo,A.K.(2019). InsuranceFundamentals (4thEd.).Lagos,Nigeria:DekinbanVenturesLtd.ISBN:987-32959-5-0.

Berkowitz,J.(2001).Testingdensityforecasts,withapplicationstorisk management. JournalofBusinessandEconomicStatistics 19,465–474.

Blaauw,A.J.(2009). MarketRiskManagementinNigeria.Unitedbankfor Africa(UBA)Plc.Accessedfrom www.ubagroup.com on01/02/ 2022.10:00GMT.

Danu,M.(2014).DimensionofMarketRisk.StudiesandScientific Researches,EconomicsEdition,issue19.Accessedfrom https:// EconPapers.repec.org/article on20/02/202201:06GMT.

Dowd,K.(2002). AnIntroductiontoMarketRiskManagement.JohnWiley &SonsLtd,Chichester.

Elton,E.J.,andGruber,M.J.(1995). ModernPortfolioTheoryandInvestment Analysis.FifthEdition.NewYork:JohnWileyandSons,Chichester. Emilia,M.(2010).ModelsforAnalysisandAssessmentofMarketRisks inBanking.UniversityofNationalEconomy,Bulgaria. FactaUniversitatisEconomicJournal,Vol.7.No.4.

MeasurementModelsforMarketRiskManagementinNigeria 59
ˆ
ˆ
ˆ
ˆ

Enyi,P.,andAdebawo,O.(2014).ImpactofRiskExposuresontheMarket ValueofNigerianBanks(2006-2012). AmericaInternationalJournalof ContemporaryResearch,Vol.4.No.10. Hubbard,D.(2009). TheFailureofRiskManagement. JohnWilley&and sonsp.46. Jamshidian,F.,andZhu,Y.(1997). ScenarioSimulation:Theoryand Methodology.FinanceandStochastics1:43–67. Kallestrap,R.(2012). TheDynamicsofBankandSovereignCreditRisk.PhD ThesisattheCopenhagenBusinessSchoolandtheCentralBankof Denmark.RetrievedfromNationalBank en.dk/c1256BE9...strup_p hd_Thesis_2012.pdf 9/12/21,10:10GMT. Kato,T.,andYoshiba,T.(2000).ModelRiskanditsControl.BankofJapan InstituteforMonetaryandEconomicStudies: DiscussionPaperNo. 2000-E-15.

Langrin,R.B.,andRoach,K.(2009).MeasuringtheEffectsofConcentrationandRiskonBankReturns:Evidencefromapanelindividual loanportfolioinJamaica. Business,FinanceandEconomicsinEmerging Economies.4(1):74–119.

Mandelbrot,B.,andRichard,H.(2006). TheMisbehaviorofMarket:AFractalViewofFinancialTurbulence. Navarrete,E.(2006). PracticalCalculationofExpectedandUnexpectedLosses inOperationalRiskbySimulationMethods.ScalarConsulting1–10. Scaillet,O.(2000). Non-ParametricEstimationandSensitivityAnalysisof ExpectedShortfall. Mimeo.IRES,CatholicUniversityofLouvain. Zhang,Y.(2006). APortfolioTheoryofMarketRiskLoad.CausalityActuarial SocietyForum.

60 AdeolaKudiratBanjoandOmotayoJohncallyAbere

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Measurement Models for Market Risk Management in Nigeria by BOHR International Journal of Financial market and Corporate Finance (BIJFMCF) - Issuu