BOHRInternationalJournalofEngineering 2022,Vol.1,No.1,pp.39–43 https://doi.org/10.54646/bije.008 www.bohrpub.com
OptimizationofFlexibleManufacturingSystemsUsingIoT
V.Kandavel∗ ,V.PreethiandJohnpeterSoosairajDepartmentofMechanicalEngineering,SSMInstituteofEngineeringandTechnology, Dindigul,India
∗
Correspondingauthor:vkvel3467@gmail.com
Abstract. Aflexiblemanufacturingsystem(FMS)isanautomatedmaterialhandlingandintegratedworkstation thatiscomputer-controlledandusedfortheautomaticrandomprocessingofpalletizedparts.Toassessthe effectivenessoftheFMSdesignbeforedeployments,computersimulationisacost-effectivemethod.Itiscrucialto testthissimulationsoftwarebeforeusagesincetheyhavesuchaclearinfluenceontheFMSdecision-makingprocess. AFMSisacomplicated,integratedsystemthatincludesacentralcomputernumericalcontrolmachiningcenterand anautomatedmaterialmanagementsystem.ThesoledrawbackofFMSisitsgreaterinitialcostandreplacement costifitdoesnotfunctionproperly.Therefore,itisimportanttoanalyzeFMSbeforeinstallingit.Theuseof Industry4.0technologieshasexpandedtheflexibilityoftheentiremanufacturingsystem.Thedevelopmentofthese technologies,whichincludetheInternetofThings(IoT),bigdata,artificialintelligence(AI),additivemanufacturing (AM),sophisticatedrobotics,virtualreality,cloudcomputing,simulation,andothers,hasincreasedtheindustrial system’sadaptability.
Keywords: Flexibletransferlines,flexiblemanufacturingcells(FMC),InternetofThings(IoT),andFlexible ManufacturingSystem.
INTRODUCTION
Theavailabilityofseveralworkstationsatwhichgeneric processesarecarriedoutdefinesflexiblemanufacturing systems(FMS).Thissystem’sflexibilityisrealizedthrough anetworkofprogrammabletransportationthatconnects theworkstationsandanadvancedcontrolsystemthat coordinatestheoperationsoftheworkstationsandtransportsystemswhilekeepingtrackofthestatusofthe ongoingjobs.Ingeneral,innovationsfascinatepeople, especiallyiftheresultscanbenefitthem.Theglobalmarketplaceisimpatientandprice-sensitive.
Duetodailyfluctuationsinclientdemandforawide rangeofgoodswitheightpre-specifiedqualityatlower prices,Indianbusinessrequiresflexibleproductionfacilitiestocompeteintoday’sglobalmarketincorporating innovativeproductiontechnologieslikeFMS,JIT,CAD, andCAM,whichhaveenormouspotential.Themany independentmanufacturingsystemsthatwerediscussed throughoutthisarticlemaybecombinedinIndiatocreatea single,large-scalesysteminwhichtheproductionofparts ismanagedwiththeassistanceofacentralcomputerto
satisfythedailychangesinconsumerexpectations.Sucha productionsystemhasthebenefitofbeingveryflexiblein termsofthelittleeffortandrapidturnaroundtimeneeded tomakeanewproduct;forthisreason,itisreferredto asaFMS.

THEFMSCONCEPT
TheFMSoffersbatchproductionwiththeefficiencyof massmanufacturing.Whencomponentsareproducedin lotsoffewtomorethan50,withatotalyearlydemand oflessthan,say,100,000units,itisreferredtoasbatch production.Whengreateryearlyproductionratesare needed,massmanufacturingisused,andthus,theusage ofspecializedmachinerymightbejustified.Itmaycost100 timesasmuchtocreateasingleunitusinggeneral-purpose machinetoolsasitdoestoproducetheidenticalitem usingthemosteffectivemassproductiontechniques.It shouldbeabletolowerthecostofcreatingcomponentsin smallandmediumquantitiesbyutilizingFMStechnology. AdvancedFMSwillcontainahigh-powerlaserstation incorporatedintotheproductionline;thelaserwillbeused
mainlyforheattreatment,sheetmetalcutting,drilling,and welding.Atpresent,lasertreatmentofmaterialswitha CO2 laserinthe5–15kWrangeisbecomingmorepopular intheindustry.ThecentralcomputerofanadvancedFMS willcontainmachiningdatatoprovidetherecommended cuttingparameterstothemachinetoolsintheplant,based onaselectedtool,workpiecematerial,anduponmaximizationoftheproductionrateintheentireplant.
Differentmanufacturingequipmentwithsensing,identification,processing,communication,actuation,andnetworkingcapabilitiescanbeconnectedthroughtheInternet ofThings(IoT).TheIoTcanbeutilizedforindustrial applicationsandsmartmanufacturingthroughnetwork controlandmanagementofmanufacturingequipment, assetandsituationmanagement,ormanufacturingprocess control.IntelligentIoTsolutionsallowforquickproduct development,productoptimization,andquickreactionto marketdemands.
TheIoTincludesdigitalcontrolsystemsthatautomate processcontrols,operatortools,andserviceinformation systemsthatimproveplantsafetyandsecurity.Utilizing measurements,statisticalanalysis,andpredictivemaintenance,IoTcanalsobeusedinassetmanagementto increasereliability.Energyoptimizationismadepossible throughtheintegrationofindustrialmanagementsystems withsmartgrids.Networkedsensorsareusedformeasurements,automatedcontrols,plantoptimization,healthand safetymanagement,andotherpurposes.IoTisemployed forproceduresintheindustrializationofbuildingsinadditiontonormalmanufacturing.
AdvancedManufacturingSystems

Whilethevariousevolutionarystagesinthedevelopment ofcomputernumericalcontrol(CNC)machinesprovided ameansforeffectivepartproduction,overtimeandwith rapiddevelopmentsinelectronics,machinetooltechnologyhasgraduatedfromtheconceptofstandalonemachine toolstosystem-orientedmanufacturing.Thisresultedin theintroductionofflexiblemanufacturingcell(FMC), FMS,andcomputer-integratedmanufacturing.
Thus,theemphasishasshiftedfrommechanicalhardwareinthecaseofconventionalmanufacturingtoa
Figure2. MajorconstituentsofanFMS.
Figure1. Value-wisecontentsofmechanicalandelectronicsoftwareandhardwareindifferentmanufacturingfacilities.


Figure3. IntegrationofvariousconstituentsofanFMS.
combinationofmechanicalandelectronicsoftwareand hardware,whichnowaccountsfor30–50%ofthevalueof modernmanufacturingsystems.
AnFMC/FMSistypicallyamanufacturingcellorsystemmadeupofoneormoreCNCmachinesconnectedby anautomatedmaterialhandlingsystem,allofwhichare controlledbyacentralcomputer.Theremayalsobeadditionalauxiliarysubsystems,likecomponentloadingand unloadingstations,automatictoolhandlingsystems,wash stations,componentmeasuringapparatuses,andtoolpresetters.Figure 2 showsthemajorconstituentsofanFMS, andFigure 3 givestheintegrationofvariousconstituents ofanFMS.
Factorymanagersmayautomaticallygatherandevaluatedatausingsmartmanufacturingtomakebetterdecisionsandmaximizeproduction.IoTconnectivitysolutions installedatthefactoryleveltransmitdatafromsensors andmachinestothecloud.Thesedataareexamined, mergedwithrelevantinformation,andthendisseminated torelevantpartieswithauthorization.
BenefitsofanFMS
• Balancedoutput
• Bettercontroloverproduction • Easiertoexpand
• Fewerrejections
• Flexibilitytochangepartvariety
• Highproductquality
• Highermachineutilization
• Higherproductivity
• Just-in-timemanufacturing
• Minimallymannedoperation
• Reducedcycletime
• Reducedworkinprocessandinventory
TRENDSINTHEADOPTIONOFFMS
FMSwasadoptedintheUSAwaybackin1967,butits widespreadapplicationhasbeenratherslow.In1981,the worldpopulationofFMSwasestimatedtobeonly115, with25FMSinstallationseachintheUSA,WesternEurope, and40inJapan.Butby1986,thepopulationhadgrownto over200;anindustry-wiseapplicationofFMSisgivenin Figure 4
Thus,withdevelopmentovertime,themanufacturing industrynowhasaspectrumofproductionalternatives tochoosefromdependingonpartvarietyandproduction volume.Theproductionofalimitedvarietyofpartsin highvolume,whichistypicalofautomobileindustries,is servedbytransferlines.Whenthevolumeislarge,buta varietyofpartsareinserted,thetransferlineisdesigned withsomebuilt-inflexibilitytohandletheproduction requirement.FMSareidealfortheproductionoflargepart tools,industrialmachinery,andgeneralengineering.
Industriesmanufacturingitemssuchastractors,earthmovingequipment,agriculturemachinery,anddefenserelatedcomponentshaveproductionrequirementsofa fairlylargevolumeandawidervarietyofparts.This needisbeingmetbywhatmaybetermedasdesigned FMS/FMC,wherethebasicproductionequipmentisflexible,butthevolumeishighenoughtodedicateindividual machinestospecificparts.
Industriesseeanincreaseinproductivityduringproduct productionwhenthistechnologyisusedproperly.Manufacturingisdonemorecheaplyandwithfewermistakes.
Tofullybenefithumanity,thereisstillmuchworktobe done.Ithasnumeroususesformonitoringproduction systemsinthemanufacturingandserviceindustries.By enablingincreasedperformance,thistechnologyexpands manufacturing’spotentialforinnovationandnewpossibilities.Themainelementsofthistechnologyaresoftware, hardware,andnetworkconnectivityfordatacollection andalteration.IoTfostersinnovativedisruptioninthe manufacturingsector.
StepwiseApproachtoFMS
Aleadingmachinetoolmanufacturerabroadhasoutlined astepwiseadoptionofanFMSforprismaticproduction,as detailedbelow.
Step1: Theusercangainexpertiseinpalletizingworkand processingamixedbatchofcomponentsonastandalone machinewithnamelessoperationcapabilities.
Step2: Performancein2daysisimprovedbytheadditionofarail-guidedvehicleandupto15palletstands. Thevarietyofcomponentsthatcanbehandledwithout operatorassistanceexpands,andthedurationofunnamed operationcanbeincreased.
Step3: Itispossibletoaddmachineswithupto15pallet standsapiece.Palletsarededicatedtocertainmachines atthislevel.Eachmachinehasadesignatedload/unload stationwheretheseoperationsareperformed.Inresponse tocommandsfromthevariousmachinecontrolsystems, therail-guidedvehiclemoves.
Step4: Thesamesystemhardwarespecificationsasinstep 3pluscontroloverseparatetransports.Now,anymachine maybeloadedwithanypallet.Ratherthanresponding tomachinerequestsinaqueueforthenextcomponent, thetransporteroperatesfollowingtheprioritiessetbythe operator.
Step5: Thecellmaybeextendedtoaccommodatemore machinesandsupportoperationslikeinspectionand washingwiththeinstallationofahostcomputer.Tofully utilizeautomatedmanufacturingtechnologies,encompassingallbusinessandengineeringoperationsleadingtocomputer-integratedproduction,ahostcomputer upgradesthesystem.
Step6: TheIoTistocollectandsharedataviaInternetconnectedmachinesandgadgets.Itisconnectedtoparticularidentificationnumbersorcodesthatcanbemanaged byeverydaygadgetslikecellphones,whichisverymuch usefulforthebeneficiariesofthehumanconcernworking inthatindustrialenvironment.
FlexibleManufacturingCells
Figure4. Industry-wiseapplicationofFMS.
AnFMCisthemostfundamentaltypeofFMSandis thereforethemostadaptable.Itismadeupofafew

general-purposeorspecializedCNCmachinetoolsconnectedtoautomatictoolandmaterialchanges.Centers arefrequentlythestartingpointforFMS,buttheycan beautomaticallymachinedbyFMCs.Aturningcenter withagantry,anunloadingsystem,andpalletsforstoring workpiecesandfinishedcomponentsiscommonlyknown asaflexibleturningcell.Theproductivityofthecellcan beincreasediftheturningcentercontainspost-process metrologytoolslikeRenishawprobesorinductivemeasuringtools,automatictoolchanges,toolmagazines,block tooling,automatictooloffsetmeasurement,andautomatic chuckchanges.Oneormorehorizontalmachiningcenters withmodularfixtures,numerouspallets,anadvanced toolmanagementsystem,anautomobiletoolchanger,an automobileheadchanger,anautomaticmagazinechange, robotsorothermaterialhandlingsystemstoaidinjob accesstothemachine,andoneormoreflexiblemachining cellsmakeupaflexiblemachiningcell.
FlexibleTransferLines
High-volumeproductionsaresuitedforflexibletransferlines(FTLs).Inahigh-volumemanufacturingsetting, apartcouldneedtogothroughnumerousoperations, eachofwhichisassignedtobecompletedonasingle machine.Asaresult,eachcomponenttravelsalonga setpaththroughthesystem.Typically,thematerialhandlingsystemconsistsofaconveyor,carousel,orpallet. Alongwithgeneral-purposemachines,itmayalsoinclude robots,special-purposemachines,andsomespecialized equipment.Itissimplertoplanforbalancingmachine loads.Unlikeconventionaltransferlines,theFTLallows forthefabricationofavarietyofworkparts.Theprocess ofresettingismostlyautomatic.
Multipleuniversalorspecializedflexibleautomated machinetoolsarecombinedintoaflexiblemachining systemcalledaflexiblemachiningsystem.Thisallowsfor thesimultaneousmachiningofmultipleworkcomponents. Thedefiningcharacteristicisthemachineinterlinkage, whichisunrestrictedbycycleconcerns.Itispossibleto compensateforvariedmachiningtimesatthevarious stationsbyemployingcentralizedordecentralizedworkpiecebufferstorage.Flexibilityisappliedtomachines throughCNCcontrolandproductflowfromonemachine toanother,whichismadepossiblebyadaptabletransport systems.Flexibilityisthecapacityofasystemtoadapt tochangesinthevolumesoftheproductmixaswellas themachiningproceduresandsequences.Asaresult,an FMSwillbeabletoreactquicklytoshiftingconsumerand marketdemands.
MAJORELEMENTSOFFMS
EachmajorsubsysteminanFMScarriesoutavarietyof tasks,andeachonedependsontheothersforthesystem
tooperateasawhole.Thetasksvaryaccordingtothe machineryandmanufacturingprocessesthatareused.
• Productionequipment
• FMSforsheetmetalwork
• FMSformachining
• Supportsystems
Automatedmachinetoolsfrequentlyrequiremanysystemstofunction.Ateachmachineorinthecentertool storage,therequiredtoolsformachiningcentersorturning centers’numerousoperationsmaybehousedinmagazines.Localpublicationsprovidequickaccessandbackup capacity,butinalargeFMS,acentraltoolfacilitymightbe moreefficient.
MaterialHandlingSystem
TomaintainanFMS,severalmaterial-handlingsystemsare oftenrequired.
• Amechanismformovinggoodsinandoutofthe FMS,suchasRVs,gantrysystems,AGVs,andoverheadconveyors.
• Atransfersystemtoloadandunloadthemachines.
• Abufferstoragesystemformachineworkpiece queues(e.g.,pallets).
• Thesesystemsmustbecoordinatedwithmachine operationstofunctionproperly.
OPTIMIZATIONOFFMS
Thefollowingstrategiesshouldbetakenintoaccountto maximizetheFMS’soveralleffectivenessandefficiency.
• Utilizingeachmachinetoitsfullestcapacity,cutting downonprocesscycletimes,andkeepingworkorganizedinautomatedstoragesystemssothatmachines canprocessitareallgoodpractices.
• Theuseofidentitymarkingmethods,providingadequatesensorsfordefectorproblemdetection,havingbackupoptions,includingin-processmeasurementandinspectionprocesses,andhavingbackup options.
CONCLUSION
AnFMSisadoptednotonlyinadvancedcountriesbut alsointheIndianindustry.Inthepast5years,someof theleadingautomobile,machinetool,anddefensesectors inthecountryhavealsoinstalledFMS.HMThasalready developedanFMSonapilotbasisandhasundertakenthe supplyofanFMStothedefensesectorunderajointworkingagreementwithanoverseasmanufacturer.Although theFMSrequiresahigherinitialinvestment,itsbenefits aresubstantialinthelongrun.Hence,theadoptionofFMS intheIndianindustryislikelytogrowinthefutureasthe demandforflexibilityandproductivityincreases.
Withthermalandvideosensorsgatheringcomprehensiveproductdataacrossvariousstagesofaproductcycle, theIoTmakesthisprocedureproactive.Ateachstageof themanufacturingprocess,thegoodscanalsobechecked toseeiftheircharacteristicsmeettherequirements.Instrumentationandmonitoringofproductionequipmentalso assistqualitycontrolstaffindeterminingwhetherand whereequipmentcalibrationdeviatesfromstandardsettings.Suchinaccuraciesmustbestoppedinadvanceto preventmisalignmentofproducts.
REFERENCES
[1] MikellP.Groover(1998) “Automation,productionsystems,andComputer IntegratedManufacturing ”Prentice–HallofIndiaNewDelhi-110001. pp.461–484.
[2] R.Subha,V.Kandavel,V.etal.(2022),“AnInternet–of–Things enabledSmartFireFightingSystem”–BOHRInternationalJournal ofInternetofThings,ArtificialIntelligenceandMachineLearning, Vol.1,No.1,pp.44–46.
[3] “Mechatronics”ByHMTLtd.,TataMc-GrawHillpublicationCo.Ltd. NewDelhi.pp.20–28.
[4] YoramKoren” ComputerControlofManufacturingSystems”TataMcGrawHillInternationalEditions(Mech.Engg.Series)pp.255–257.
[5] P.Radhakrishnan&S.Subrahmanyan(1995) ”CAD/CAM/CIM” New AgeInternationalPvt.Ltd.,Publishers,NewDelhi.pp.477–496.
[6] AlbertW.JonesAnthonyP.Hammons,NelsonP.Bryner,andGalenH. Koepke,(2017)‘ResearchRoadmapforSmartFireFighting.Retrieved July1st,from https://www.nist.gov/publications/research-roadm ap-smart-fire-fighting?pub_id=918636
[7] Varghese,B.,Wang,N.,Nikolopoulos,D.S.andBuyya,R.,(2020),‘Feasibilityoffogcomputing.InHandbookofIntegrationofCloudComputing, Cyber-PhysicalSystems,andInternetofThings (pp.127–146).Springer, Cham.
[8] BlessonVarghese,NanWang,SakilBarbhuiya,PeterKilpatrick,and DimitriosS.Nikolopoulos(2016),‘ChallengesandOpportunitiesin EdgeComputing.InIEEEInternationalConferenceonSmartCloud (SmartCloud)’IEEE,NewYork,20–26.
[9] WeisongShi,JieCao,QuanZhang,YouhuiziLi,andLanyuXu,(2016), ‘EdgeComputing:VisionandChallenges’IEEEInternetofThings Journal3,5(October2016).