Fraud Detection in E-Commerce Using Machine Learning

Page 1

BOHRInternationalJournalofAdvancesinManagementResearch 2022,Vol.1,No.1,pp.7–14 https://doi.org/10.54646/bijamr.002 www.bohrpub.com

FraudDetectioninE-CommerceUsingMachineLearning

SamratRay

ISMSSankalpBusinessSchool,Pune,India

E-mail:samratray@rocketmail.com

Abstract. Ariseintransactionsisbeingcausedbyanincreaseinonlinecustomers.Weobservethattheprevalenceof misrepresentationinonlinetransactionsisalsoincreasing.Devicelearningwillbecomemorewidelyusedtoavoid misrepresentationinonlinecommerce.Thegoalofthisinvestigationistoidentifythebestdevicelearningcalculation usingdecisiontrees,naiveBayes,randomforests,andneuralnetworks.Therealitiestobeutilizedhavenotyet beenmodified.Engineeredminorityover-testingstabilityinformationismadeutilizingthestrategyframework. Theprecisionofthebrainnotentirelysettledbythedisarraynetworkappraisalis96%,trailedbynaiveBayes(95%), randomforest(95%),anddecisiontree(92%).

Keywords: AI,fraudidentification,algorithms,matrix,web-based.

INTRODUCTION

AccordingtoresearchonwebclientsinIndonesiapublishedintheOctober2019issueof FreeMarketeersMagazine,thecountry’s132millionwebclientsin2019alone representedanincreasefromthe142.3millionclients depictedinFigure1fromthepreviousyear.Therewere fartoomanypeopleusingtheweb-basedsystemand conductingweb-basedtransactionsduringCOVID-19,but wherethereareinventions,therearealsomanyproblems. Therearenumerousmethodsforgrowingane-commerce business[1, 3].

Basedoninformationfrommanydatasets,itispredicted thatby2022,theamountofretailonlinebusinesstransactionsinIndonesiawillexpandfromitscurrentpositionto 134.6%ofUS$15.3million,oralmost217trillion.Rapid technicaladvancementsthatmakeiteasierforcustomers toshoparesupportingthisgrowth.

Numerouse-commercetransactionspresentavarietyof challengesandnewproblems,particularlythee-commerce fraudshowninFigure 2.ThenumberofInternetbusinessrelatedscamshasalsocontinuouslyclimbedsincearound 1993.Accordingtoa2013survey,5.65penniesoutofevery $100inweb-basedbusinessexchanges’totalturnoverwere overstated.Morethan70trilliondollarswillhavebeen stolenby2019[4, 5].Fraudidentificationisonemethodto cutdownonmisrepresentationinonlinetransactions.

Thetechnologyfordetectingcreditcardfraudhas advancedquickly,movingfrommachinelearningtodeep learning[6].Butregrettably,theamountofresearchon e-commercefrauddetectionisstilltiny,anditisonlynow focusedonidentifyingthetraitsorqualities[7]thatwill beusedtoidentifywhetherane-commercetransactionis fraudulentornot.

Thedatasetsusedinthisstudyhadacombined140,130 insights,11,150datapoints,anda0.093rateforextortion measures.Datasetswithverysmallproportionsproduce lopsidedinformation.Whencomparedtominoritydata, irregularitydataproducesmoreaccurateresultsthatare moreheavilyweightedtowardbiggerportionsofinsights. Thecategorizationofmainlynon-extortionasopposed tomisrepresentationproducedmoreremarkablefindings fromthedatasetstudied.Usingthedestroyed(synthetic minorityoversampling)strategytoadapttodatairregularitiesworsenstheclassoutcomes[8, 9].

Thisstudyaimstoidentifythemosteffectivemodelfor identifyingdeceptioninanonlinetransaction.Extraction isincludedinrecentresearchonwheretofindfraudinecommerce[10, 11].Thispaperconcentratesonfrauddetectionine-commerce.Itconcentratesontheuseofdatasets fromKaggle,upgradegroupingAI,theuseofSMOTE, andSMOTEutilizationtakingcareofunbalancedrecords. AftertheuseofSMOTE,thedatasetwillbetrainedonthe useofcontraptiondominating.Decisiontrees,naiveBayes,

7

Figure1. Growthofinternetusers[2].

Figure3. Researchsteps.

Sincemisrepresentationsituationsaretypicallyabout 2%,theSMOTEtechniqueisusefulforreducingthegreater portionoftheclassinthedatasetandaddressinginformationdiscomfortissues.TheimplicationsoftheSMOTE datasetexchangemisrepresentationcyclewillbealteredif thebiggerpartclasscausesthegroupingtobemorecoordinatedtothelargerpartclasssuchthatthepredictionsof theorderarenotaccurate[12, 15].

Inthecharacterizationcycle,AIutilizedadecisiontree, irregularwoodland,counterfeitbrainorganization,and credulousBayes.Theweb-basedfirmusestheseAIcalculationstotakeintoaccountandthenlocatetheexchange dataset’sgreatestaccuracyoutcomes.

PreprocessingData

Figure2. Salesofe-commerce, statista.com [4].

irregularwoods,andbrainnetworkmachineexaminations areusedtodeterminetheexactness,correctness,andconsiderationofF1-rating,andG-mean.

MATERIALSANDMETHODS

Usingcomputationsfromdecisiontree,naiveBayes,randomforest,andneuralnetworks,thisstudyinvestigates extortionandnon-misrepresentationinonlinebusiness transactions.Thecyclehasended,asseeninFigure 3.

Thedataset’scomponentdeterminationprocessserves asthestartingpointforthecollectionframework. Change,normalization,andscaleofthecharacteristicsare employedtoexpresstherelationshipsothattheymaybe usedforthegameplanoncetheSMOTEprocedurehasfinishedthedepictioncycle.Afterthat,thereisnopermanent setup,whichisaccomplishedbypreprocessingdatausing principalcomponentanalysis(PCA).Theimportanceof destroyedisessentialforbalancingfaultydata.

NewelementsthatwillbeemployedintheAIcomputationcyclearesubjecttopreprocessing,whichremoves, modifies,scales,andstandardizesthem.Unreliabledata areconvertedintoreliabledatathroughpreprocessing.The highlightsofthePCApreprocessinginthisstudyinclude extraction,modification,normalization,andscaling.

Inordertoisolatehighlightsfrominformationata high-layeredscale,PCAisadirectmodificationthatis typicallyappliedininformationpressure.Furthermore, PCAcanreducecomplexinformationtomoremodest aspectstoshowobscurepartsandimprovetheconstructionofinformation.PCAcomputationsincludecomputationsofcovarianceframeworkstolimitdecreasesand boostchange.

DecisionTree

Decisiontreesarevaluableforinvestigatingextortion informationandfindingsecretconnectionsbetweenvariouslikelyfactorsandanobjectivevariable.Thedecision tree[20]consolidatesmisrepresentationinformationinvestigationanddisplaying,soitisgenerallyexcellentasthe mostimportantphaseinthedisplayingsysteminany

8 SamratRay

Figure4. Architectureofdecisiontrees.

event,whenutilizedasthelastmodelofafewdifferent procedures[16, 18].

Decisiontreesareexcellentfororderingcomputations andareatypeofcontrolledlearningcalculation.The decisiontreeorganizesthedatasetintoafewincreasing segmentsinlinewithchoiceprinciplesbyemphasizingthe connectionbetweeninformationandresultcredits.

• Rootnode:Thisaddressesthewholepopulationor test,andthisisadditionallyseparatedintoatleast two.

• Parting:Thisisthemostcommonwayofseparating ahubintotwoor,ontheotherhand,moresub-hubs.

• Whenasub-centerpointsplitsintoafewsmallersubcenterpoints,thedecisionnodeisactivated.

• Leaf/Terminalnode:Unspecifiedcenterpointsare calledleaforterminalcenterpoints.

• Pruning:Whenadecision’ssub-centerpointis removed.

• Branch/Sub-Tree:Subdivisionsofalltreesarecalled branchesorsub-trees.

• Parentandchildnode:Acenterpointthatisdivided intosub-centers[19].

AsshowninFigure 4,thefrauddetectionemploysa decisiontreewitharoothub,innerhub,andleafhub.

NaiveBayes

NaiveBayespredictsopendoorsbecauseofexperience[23].Itinvolvestheestimationequationasbeneath.

Figure5. Architectureofrandomforest.

P(A|B):speculationpossibilitygivenconditions (returnedopportunity)

P(A):probabilityofthehypothesis(priorpossibility) P(B|A):Probability—takingintoaccountthespeculativeconditions

P(B):PossibilityA

Theaforementionedequationcanbeusedtoaccessboth fraudulentandlawfultransactions.

RandomForest

Whenalotofdataisrequired,therandomforest(RF) algorithmisused.Theclassificationandregressiontree (truck)systemhasevolvedintoRFbyincludingthebootstraphoarding(firing)methodandunexpectedelement determinationarchitecture.InFigure 5,theRFisdisplayed.

Amodelcalleda“randomforest”ismadeupofallintelligentgroupactionfraudtrees.Themaximumdepthcall treesinthee-commercefrauddetectionsystemdepends onRFandemploysarandomvectordistributionthatis thesameacrossalltrees.Thedecisiontreeproducesthe topcategories,andtheyareusedtoselecttheclassification method’scategory.

NeuralNetwork

Aneuralnetworksystemwithnodesconnected,suchas thearchitecturalneuralnetworkseeninFigure 6,isapplied inthehumanbodyaspartofthealgorithmneuralnetwork artificialintelligencetechnique.

Where

B:copewiththestatisticswithobscuretraining

A:specificsplendoristhestatisticalhypothesis

Beforepreparing,therewere11informationlayers.After preprocessing,therewere17informationlayers.Thesecret layerwasdecidedontheneuralnetworkbyhereditary calculationsonthesecretlayernotwithstandingthenumberofinfolayers[18].Thisforecastingprocedureusesthe GA-NN[19]algorithm,whichisasfollows:

FraudDetectioninE-Commerce 9
P(A|B)= P(B|A) ∗ P(A) P(B) (1)

Figure6. Architectureofneuralnetwork.

Thesepredictionsareasfollows:

• Initializationcountiszero,fitnessisone,andthere arenocycles.

• Earlystagesofpopulationgrowth.Eachconsecutive genesequencethatmakesupchromosomecodesfor theinput.

• Suitablenetworkarchitecture.

• Giveweights.

• Trainyourbackpropagationskills.examinationsof fitnessmetricsandaccumulatederrors.thenassessed accordingtotheworthoffitness.Ifthecurrentvalue offitnessisgreaterthanthepriorvalueoffitness.

• Count = count +1.

• Selection:Aroulettewheelmechanismisusedto choosethetwomains.Crossover,mutation,and reproductionareexamplesofgeneticoperationsthat createnewcapabilities.

• Assumingthenumberofcyclesrisestothecount, returntonumber4.

• Networkguidancewithpickedattributes.

• Lookatexecutionutilizingtestresults.

ConfusionMatrix

Atechniquethatmaybeusedtoassesscategorization performanceistheconfusionmatrix.Adatasetwithjust twodifferentclasscategoriesisshowninTable 1 [20].

FalsePositiveandFalseNegativecountthenumberof positivelyandnegativelycategorizedobjects,respectively,

Table1. Confusionmatrix. ClassPredictivePositivePredictiveNegative ActualPositiveTPTN ActualNegativeFPFN

whereasTruePositiveandTrueNegativecountthe numberofpositivelyandnegativelyclassedobjects, respectively(FN).

Themostpopularmetricforassessingclassificationabilitiesisaccuracy,butifyouoperateinanunequalsetting, thisassessmentisflawedsincetheminorityclasswillonly makeupaverysmallportionoftheaccuracymetric.

TheF-1score,G-mean,andrecallevaluationcriteriaare advised.TheG-meanlistisutilizedtoquantifybyand largeexecution(ingeneralarrangementexecution),though theF-1scoreisutilizedtoevaluatehowminorityclasses areorderedinimbalancedclasses.

Recall,precision,F-1score,andG-meancategorization abilitywereexaminedinthisstudy.

Accuracy = TP + TN TP + TN + FN + FP (2)

Recall = TP TN + FP (3)

Precision = TP TP + FP (4) G-Mean = √TP TN(5)

F1-Score = 2 × Precision × Recall Precision + Recall (6)

RESULTS

Dataset

ThisstudyutilizesaKaggle-obtainedonlinebusinessfraud dataset.Thedatasethas151,112records.Ofthese,14,151 recordsareclassifiedasdeceitfulmovement,andthe extentoffalseactioninformationis0.094.Theextortion exchangedatasetresultsin152,122fullrecords,14,152 recordsclassifiedasmisrepresentation,andamisrepresentationinformationfractionof0.094,asshowninFigures 7 and 8.SMOTEreducesclasslopsidednessbyblending information.

Theimagehasbeenoversampled.

DecisionTrees

Datathathaveundergonepreprocessingarepreparedfor theexperimentalphaseusingthedecisiontreemodel.Subsequenttopreprocessing,theinformationwillbeoversampledbeforeanorderutilizingadecisiontreeisperformed. Moreover,thedecisiontreewilllikewisebeperformed usinginformationthathasnotbeenoversampled.The findingsofthesetwoexperimentswillbeutilizedto

10 SamratRay

Figure7. Ratiofraud.

Figure8. Ratiofraudafteroversampling.

Table2. ConfusionmatrixdecisiontreewithoutSMOTE.

ClassPredictivePositivePredictiveNegative ActualPositive3878238782 ActualNegative17462595

Table3. ConfusionmatrixdecisiontreewithSMOTE. ClassPredictivePositivePredictiveNegative ActualPositive386512342 ActualNegative17242617

analyzedecisiontreesanddemonstratetheclassification outcomesutilizingtheSMOTEoversamplingtechnique.

Thedecision-makingprocesswithoutSMOTEprecision is53.2%,F1-scoreis56.8%,accuracyis90%,recallis57.7%, andG-meanis76.3%.Resultsfromtheconfusionmatrix decisiontreewithoutSMOTEareshowninTable 2

DecisiontreethatproducesSMOTErecallis61.4%,precisionis90.5%,F1-scoreis90.2%,andG-meanis72.2%. Accuracyis90%.ResultsfromtheconfusionmatrixdecisiontreewithSMOTEareshowninTable 3

NaiveBayes

Gettingreadyinformationthathasrecentlybeenhandled duringpreprocessingisthemannerinwhichthenaive Bayesmodeltestisdone.Followingpreprocessing,the informationwillbeoversampledutilizingthetwosortsof information:informationthathasbeenoversampledand

Table4. ConfusionmatrixNaïveBayeswithoutSMOTE.

ClassPredictivePositivePredictiveNegative ActualPositive40764229

ActualNegative19932348

Table5. ConfusionmatrixNaïveBayeswithSMOTE.

ClassPredictivePositivePredictiveNegative ActualPositive40760233

ActualNegative19882353

Table6. ConfusionmatrixrandomforestwithoutSMOTE. ClassPredictivePositivePredictiveNegative ActualPositive40881112

ActualNegative19542387

informationthathasnot,aswellasnaiveBayesarrangementwillbefinishedutilizingthetwosortsofinformation. Throughaside-by-sidecomparisonofnaiveBayesandthe oversamplingapproach,thefindingsofthesetworesearch methodswillbeutilizedtodemonstratethegrouping outcomes.

WithoutSMOTEgeneration,naiveBayesrecallis52.1%, precisionis90.2%,F1-scoreis67.9%,andG-meanis72.3%. Accuracyis95%.Table 4 displaystheconclusionsfromthe confusionmatrixnaiveBayeswithoutSMOTE.

SimpleBayesusingSMOTEoutputrecallis53.1%,precisionis93.8%,F1-scoreis95.4%,andG-meanis72.2%. Accuracyis95%.Resultsfromtheconfusionmatrixnaive BayeswithSMOTEareshowninTable 5.

RandomForest

TheRandomForestmodeltrialprocedureiscarriedout bypreparingdatathathasalreadybeenprocessedduringthepretreatmentstep,theRandomForestmodeltrial procedureiscarriedout.Inthewakeofpreprocessing, theinformationwillbeexposedtoarrangementoversamplingutilizingrandomforest.Bothoversampledand non-oversampleddatawillbeusedintherandomforest process.UtilizingtheSMOTEoversamplingapproachand therandomforestcomparison,theclassificationfindings fromthesetwostudieswillbeshown.

Therandomforestresultis54%,precisionis93.3%,F1scoreis62.7%,andG-meanis73.1%withoutSMOTEgeneration.Accuracyis95%.Theresultsofaconfusionmatrix randomforestwithoutSMOTEareshowninTable 6

Precisionis80%,F1-scoreis94.3%,SMOTEresultis 58.1%,andG-meanis75.7%.Theseresultsweregenerated viarandomforest.Accuracyis95%.TheresultsoftheconfusionmatrixrandomforestutilizingSMOTEareshownin Table 7

NeuralNetwork

Datathathavepreviouslyundergonepreprocessing arepreparedforsearchingusingtheneuralnetwork

FraudDetectioninE-Commerce 11

Table7. ConfusionmatrixrandomforestwithSMOTE.

ClassPredictivePositivePredictiveNegative ActualPositive40383610 ActualNegative18202521

Table8. ConfusionmatrixneuralnetworkwithoutSMOTE.

ClassPredictivePositivePredictiveNegative ActualPositive4111324 ActualNegative19322265

Table9. ConfusionmatrixneuralnetworkwithSMOTE.

ClassPredictivePositivePredictiveNegative ActualPositive385662539

ActualNegative958531487

Figure10. Recallresult.

Figure9. Accuracyresult.

model.Followingpreprocessing,classificationoversamplingusinganeuralnetworkandrandomforestwillbe performedonthedata.Neuralnetworkswillbeused withoversampleddata,whilerandomforestswillbe usedwithundersampleddata.Thefindingsofthesetwo experimentswilldemonstratehowclassificationoutcomes wereattainedutilizingneuralnetworkcomparisonand thesyntheticminorityoversamplingtechnique(SMOTE) oversamplingapproach.

NeuralnetworkcreationwithoutSMOTEprecisionis 96.1%,F1-scoreis95.1%,accuracyis96%,recallis56%,and G-meanis74.5%.Resultsfromaconfusionmatrixneural networkwithoutSMOTEareshowninTable 8.

TheneuralnetworkthatgeneratestheSMOTEresult hasa76.7%SMOTE,92.5%precision,85.1%F1-score,and 82.4%G-mean.Theaccuracyis85%.Table 9 displays findingsfromthedisorderframeworkbrainnetworkusing SMOTE.

Theaccuracynumbersfromexperimentsemploying variousmethodsaredisplayedinFigure 9.Theneural networkalgorithm’sbestaccuracyratingis96%.

Reviewvaluesarecreatedbytestsutilizingdifferent calculations,asdisplayedinFigure 10.WhenAIcomputationsandtheSMOTEareutilizedinplaceofonlydecision

Figure11. Precisionresult.

trees,randomforests,naiveBayes,andbrainnetworks, reviewvaluesincreasemorequickly.Theneuralnetwork computationandtheSMOTEprovidedthebiggestrisein reviewvalues.

AsdisplayedinFigure 11,resultsfromtestsutilizing differentcalculationsshowthataccuracyvaluesdecline whileAIcalculationsandtheSMOTEareutilizedrather thanjustthecommonlyusedalgorithms,whichwementioninthemethodology,withthemostnoteworthydecline happeningwhenneuralnetworkcalculationsandSMOTE areutilized.

AscanbeshowninFigure 12 fromexperimentsusing manyalgorithms,integratingmachine-learningalgorithms withtheSMOTEresultsinhigherF1-scorevaluesthanjust utilizingalgorithmsalone.Thecategorizationofminorityclassesintoimbalancedclassesisevaluatedusingthe F1-score.

RatherthanusingjusttheG-meancalculationtoevaluateingeneralexecution(byandlargeorderexecution),the G-meanvaluerosewhileutilizingAIcalculationvaluesas displayedinFigure 13.

12 SamratRay

Figure12. F1-scoreresult.

Figure13. G-meanresult.

CONCLUSIONANDFUTUREWORK

Ahereditarycalculationcanbeusedtodeterminethe numberofsecrethubsandlayers,aswellastoselectthe appropriatequalitiesforbrainorganizations.Thereview, F1-score,andG-meanqualitieswereexpandedinthe analysiswhileutilizingtheSMOTEapproach.Memory utilizingbrainnetworksrosefrom52%to74.6%,reviews utilizinggullibleBayesrosefrom41.2%to41.3%,reviews utilizingarbitrarywoodlandsrosefrom54%to57%,and reviewsutilizingchoicetreesrosefrom57.7%to62.3%.

ThevalueoftheF1-scoredeveloperhasincreasedfor allAItechniques,risingfrom69.8%to85.1%forneural networks,67.9%to94.5%fornaiveBayes,69.8%to94.3% forrandomforest,and56.8%to91.2%fordecisiontrees. However,SMOTEincreasesthevalue.

Inlightofthediscoveriesofthepreviouslymentioned try,itwasresolvedthatSMOTEhadtheoptiontowork ontheexhibitionofbrainorganizations,arbitrarytimberlands,choicetrees,andnaiveBayes.Addressthewebbasedbusinessmisrepresentationdataset’slopsidedness byexpandingG-meanandF-1scoresincontrastwith brainorganizations,choicetrees,irregulartimberlands,

andnaiveBayes.ThisshowstheviabilityoftheSMOTE approachinraisingtheclassificationofimbalancedinformationexecution.

Futureresearchisanticipatedtoenabletheuseofadditionalcomputationsorin-depthlearningforthelocationof onlinebusinessdeceptionaswellasotherinvestigationto increasetheaccuracyofthebrainnetworkemployingthe SMOTEapproach.

REFERENCES

[1] AsosiasiPenyelenggaraJasaInternetIndonesia,“Magazine APJI(AsosiasiPenyelenggaraJasaInternetIndonesia)”(2019):23 April2018.

[2] AsosiasiPenyelenggaraJasaInternetIndonesia,“Mengawaliintegritaseradigital2019–MagazineAPJI(AsosiasiPenyelenggaraJasa InternetIndonesia)”(2019).

[3] Laudon,KennethC.,andCarolGuercioTraver.E-commerce:business,technology,society.2016.

[4] statista.com.retaile-commercerevenueforecastfrom2017to2023 (inbillionU.S.dollars).(2018).RetrievedApril2018,fromIndonesia: https://www.statista.com/statistics/280925/e-commerce-revenuef orecast-in-indonesia/

[5] Kiziloglu,M.andRay,S.,2021.Doweneedasecondenginefor Entrepreneurship?Howwelldefinedisintrapreneurshiptohandle challengesduringCOVID-19?.In SHSWebofConferences (Vol.120). EDPSciences.

[6] Roy,Abhimanyu,etal.“Deeplearningdetectingfraudincreditcard transactions.”2018SystemsandInformationEngineeringDesign Symposium(SIEDS).IEEE,2018.

[7] Zhao,Jie,etal.“Extractingandreasoningaboutimplicitbehavioralevidencesfordetectingfraudulentonlinetransactionsin e-Commerce.”Decisionsupportsystems86(2016):109–121.

[8] Zhao,Jie,etal.“Extractingandreasoningaboutimplicitbehavioralevidencesfordetectingfraudulentonlinetransactionsin e-Commerce.”Decisionsupportsystems86(2016):109–121.

[9] Pumsirirat,Apapan,andLiuYan.“Creditcardfrauddetection usingdeeplearningbasedonauto-encoderandrestrictedboltzmann machine.”InternationalJournalofadvancedcomputerscienceand applications9.1(2018):18–25.

[10] Srivastava,Abhinav,etal.“Creditcardfrauddetectionusinghidden Markovmodel.”IEEETransactionsondependableandsecurecomputing5.1(2008):37–48.

[11] Lakshmi,S.V.S.S.,andS.D.Kavilla.“MachineLearningForCredit CardFraudDetectionSystem.”InternationalJournalofApplied EngineeringResearch13.24(2018):16819–16824.

[12] Ray,S.andLeandre,D.Y.,2021.HowEntrepreneurialUniversity ModelischangingtheIndianCOVID–19Fight?.Entrepreneur’s Guide, 14(3),pp.153–162.

[13] Bouktif,Salah,etal.“Optimaldeeplearninglstmmodelforelectric loadforecastingusingfeatureselectionandgeneticalgorithm:Comparisonwithmachinelearningapproaches.”Energies11.7(2018): 1636.

[14] Xuan,Shiyang,GuanjunLiu,andZhenchuanLi."Refinedweighted randomforestanditsapplicationtocreditcardfrauddetection."InternationalConferenceonComputationalSocialNetworks. Springer,Cham,2018.

[15] Samrat,R.,2021.WhyEntrepreuneralUniversityFailstoSolve PovertyEradication?.HeraldTuvaStateUniversity.No.1Socialand HumanSciences,(1),pp.35–43.

[16] Zhao,Jie,etal.“Extractingandreasoningaboutimplicitbehavioral fordetectingfraudulentonlinetransactionsine-Commerce.”Decisionsupportsystems86(2016):109–121.

FraudDetectioninE-Commerce 13

[17] Sharma,Shiven,etal.“Syntheticoversamplingwiththemajority class:Anewperspectiveonhandlingextremeimbalance.”2018IEEE InternationalConferenceonDataMining(ICDM).IEEE,2018.

[18] Kim,Jaekwon,YoungshinHan,andJongsikLee.“Dataimbalance problemsolvingforsmotebasedoversampling:Studyonfaultdetectionpredictionmodelinsemiconductormanufacturingprocess.” AdvancedScienceandTechnologyLetters133(2016):79–84.

[19] Sadaghiyanfam,Safa,andMehmetKuntalp.“ComparingthePerformancesofPCA(PrincipleComponentAnalysis)andLDA(Linear DiscriminantAnalysis)TransformationsonPAF(ParoxysmalAtrial Fibrillation)PatientDetection.”Proceedingsofthe20183rdInternationalConferenceonBiomedicalImaging,SignalProcessing.ACM, 2018.

[20] Harrison,PaulaA.,etal.“Selectingmethodsforecosystemservice: Adecisiontreeapproach.”Ecosystemservices29(2018):481–498.

[21] Ray,S.,2021.AreGlobalMigrantsAtRisk?ACovidReferralStudy ofNationalIdentity.InTransformationofidentities:theexperience ofEuropeandRussia(pp.26–33).

14 SamratRay

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.