Discrete Element Assemblies

Page 1

Discrete Element Assemblies

Creating a resilient structure that spans, covers and uses dry stacking of bricks

Workshop I - DW 101A SHAJAY BHOOSHAN

X I U J I N G WA N G ATA H A N TO P Ç U P E N DA R G O L F E S H A N B H AVATA R I N I K U M A R AV E L


2


A R C H I T E C T U R A L A S S O C I AT I O N SCHOOL OF ARCHITECTURE AA DESIGN RESEARCH LAB

3


Workshop I - DW 101A T U TOR : SHAJAY BHOOS HAN X I U J I N G WA N G ATA H A N TO P Ç U P E N DA R G O L F E S H A N B H AVATA R I N I K U M A R AV E L 4


Workshop Brief

The objective of the workshop is to make a structure that spans, covers and uses dr y stacking of bricks. The dr y staking is purely relied on friction. The principle is to harness the strength of the material by altering the individual and collective geometr y. The end product will have to be a system of components that tolerates reasonable amount of loads. 5


Table of Contents

6


Phase I

9

Modu le E x plora tion Modu le Testin g

Phase II 15 Modu le Prototypin g P rototype Prima r y Testing P rototype Secon da r y Tes t i n g

Phase III 23 Compon en t Behav iour S t udi es

Phase IV 35 System D evelopmen t

7


8


Phase I Modu l e Ex pl orat i on Modu l e Tes t i n g

9


M O D U L E E X P L O R AT I O N / N E X T PAG E The initial sets of exploration are more concerned with identifying an element that works well in spanning when dr y-stacked. The elements considered are rectangular foam blocks, triangular paper blocks, spring blocks, pringle blocks and stick blocks. The test to deem an element fit is to test the ability to arch or span between two points.Af ter creating an arch, third point is connected to the arch.Rectangular foam blocks work well in compression but fail at spanning. Triangular paper blocks span as domes when suppor ted at the centre, but on their own, they fail to stand. Pringle blocks allow arching upwards due to their hyperbolic paraboloid geometr y but arching downwards as means of spanning is dif ficult. 10


11


S PA N N I N G F R O M P O I N T A TO P O I N T B

M O D U L E T E S T I N G / N E X T PAG E Stick blocks made of three sticks tied at the centre such that each is perpendicular to the other, are stacked to test. They form masses easily as each block allows the other to fit into the gaps between its arms. Spanning works when formworks are used. By successfully connecting three points, the blocks pass both tests and are chosen to be prototyped and studied fur ther. 12

S PA N N I N G TO P O I N T C


13


14


Phase II

Modu l e P rotot y pi n g P rotot y pe P r i mar y Tes t i n g P rotot y pe Sec on dar y Test i n g

15


MODULE PROTOT YPING Prototypes of the stick modules are built from 3 mm thick Medium Density Fibreboard sheets that have been laser-cut to shape and interlock. The prototypes built have a maximum arm of 80 mm. 16


17


PROTOT YPE PRIMARY TESTING Prototypes are tested initially of their ability to work with prototypes of their own kind and of other kinds.It is inferred that an easily approachable centre and far reaching arms are the two essential proper ties of a successful prototype. 18


19


P R O T O T Y P E S E C O N DA R Y T E S T I N G This successful prototype has a centre that accommodates the arms of other prototypes. With sixteen arms spanning along all axes, the prototype of fers design flexibility and impressive strength. Hence, it is finalized and employed in fur ther research. 20


21


22


Phase III

Compon en t B e h av i our S t udi es

23


S TAC K I N G S T R AT E G I E S Stacking the prototypes, one over the other such that one leg of the upper module and one upright arm of the lower module fit in each other’s centers, results in chains of incredible flexibility. These chains are engaged in tests for strength. 24


TO P V I E W

PERSPECTIVE VIEW

TOP VIEW / T WISTING

PERSPECTIVE VIEW / T WISTING 25


D E F I N I N G C O M P O N E N T S A N D PA R A M E T E R S The prototype is made in eight dif ferent sizes and studied for behaviour as components under forces of pushing, twisting and looping, in varied arrangements. 26


Member Arrangements X X X

X1 X2

3

4

X X X

5

6

7

8

A: X X X X X X X X X X X X B: X X X X X X X X X X X X X X X C: X X X X X X X X X X X X X X X X D: X X X X X X X X X X X X X X X X E: X X X X X X X X X X X X X X X X X X X X X F: X X X X X X X X X X X X X X X X X X X X G: X X X X X X X X X X X X H: X X X X + X X X X + X X X X + I: X X X X X XX XX 5

5

1

1

1

5

5

5

2

2 3

3

5

5

4

4

4

4

4

6

4

4

4

4

4

4

2

4

4

4

2

2

5

5

5

5

2

2

5

5

5

2

5

5

5

5

n

n

n

n ….

1………..

4

5

5

5

5

5

6

4

4

5

2

2

5

5

5

n

n

4…………………

5

5

6

6

4

4

5

5

5

5

2

n

5

5

n ….

8……………..

4

4

5

5

8

4

6

2

5

7

6

4

2

5

7

4

4

5

5

4

4

5

8

4

6

4

2

8

2

5

5

5

2

2

n

n

n ….

5

5

5

5

5

5

5

5

n

4……………

1

1

Parameters Added to Components 1:

F

2:

F

F

3:

TWISTING

4:

TWISTING

+

5:

TWISTING

+

6:

TWISTING

+

7:

TWISTING

+

8:

F

FIXED SUPPORTS

+

F

`

FIXED SUPPORTS

+

F

F

F

F

F

F F

+

+ +

LO O P

FIXED SUPPORTS

LO O P 27


T WISTING AND ARCHING Under pushing forces, the chains stand when arched downwards but fail when arched upwards. While twisting is involved in pushing, the chains work along both directions. Hence, twisting is seen to improve the strength of the component. 28


X2

X2

X2

X2

X2

E2: A2: X6

C4: X1

A R C H I N G U P WA R D

X8

A R C H I N G D O W N WA R D

B: 5

PUSH

MODIFYING T WIST

T WIST 29


4: X X X X X X X X X X X X A: T W I S T5I N G + 5

B: X X 5:

TWISTING

6:

TWISTING

1

1

5

F

+5

5

FIXED S U5 PPORT5 S

5

5

5

5

A2: X6

5

C4:

XX

X 2 X 2 X 3 X 3 X 4 X 4 X 5 X 5 X 6 X 6 X 7 X 7B : F

+

F

F

+

5

F

+

X8

X1

8

8

C: X X X X X X X X X X X X X X X X 7: D: XXX X XXX X XXX X XXX X 8: E: X X X X X X X X X X X X X X X X X X X X X F: X X X X X X X X X X X X X X X X X X X X G: X X X X X X X X X X X X H: X X X X + X X X X + X X X X + 4

4

TWISTING

4

4

4

4

4

4

2

`

6

4

4

F

2

2

5

5

5

5

2

2

5

5

5

2

5

5

5

5

5

5

5

5 ….

5

4

+

4

4

+

4

4

6

4

4

4

6

FIXED SUPPORTS

4

4

6

4

4

4

8

LO O P

5

2

2

5

5

5

5

5

Behaviour studies involving modules of different sizes reveal that smaller modules work well in bonding but of fer less cur vature while larger modules of fer greater cur vature but less bonding. Also, modules with size intervals greater than two, when placed adjacent in strands tend to fail by breaking the link. Hence, a gradual transition of module size in chains is required to ensure consistency.

2

5

5

5

5

2

5

COMPONENTS

30

4

F

F

+ 4

F

6

LO O P

5

5

5

5 ….

5

2

5

5

5

5

5

2

5

2

2

5

2

5

5

5

5

5 ….

5

5

5

5

5

5

5


F X X X

X4:1 X 2

T W I S T I N G 3+

4

X X X +

5

FIXED S7 U P P O R T S8

6

5: X X X X X X X X X X X X A: 5

6:

B: X X 7:

5

5

F

5

5

5

5

F

5

5

F

5

5

5

X2 X2 X3X3 X4X4 X5X5 X6X6 X7X7

+

TWISTING

1

F

+

TWISTING

1

+

F

F

LO O P

XX 8

8

C: XXX X XXX X XXX X XXX X 8: D: X X X X X X X X X X X X X X X X E: X X X X X X X X X X X X X X X X X X X X X F: X X X X X X X X X X X X X X X X X X X X G:Member X X X X XArrangements X X X XXXX H: X X X X + X X X X + X X X X + X X X X X X X X Parameters Added to Components 4 A: X X X X X X X X X X X X + C O N N E C TO R +

TWISTING

4

4

F

6

F

`

4

4

4

2

4

4

4

5

5

5

5

2

2

5

5

5

2

5

5

5

5

5

5

5

5 ….

3

5

5

4

5

5

5

4

6

5

5

5

2

5

5

5

7

5

5

4

5

5

6

4

2

5

5

5

F

4

4

2

2

5

4

4

5

5

4

6

FIXED SUPPORTS

4

4

4

6

5

5

2

5

4

5

5

5

4

4

2

5

8

2

5

B: X X F

1

5

2

5

2

5

5

5

5

5

5

5

5 ….

5

5

5

5 ….

8

5

5

5

5

5

5

F

XX

X2 X2 X3X3 X4X4 X5X5 X6X6 X7X7 + Parameters Added to Components 2:

6

LO O P

4

2

2

4

+

2

1

1:

4

+

1

8

FIXED SUPPORTS

8

C: X X X X X X X X X X X X X X X X 1: Member Arrangements D: X X X X XXX X XXX X XXX X 4: 2: E: X X X X X X X X X X X X X X X X X X X X X 5: X3: X X X X X X X 6: F: X X X X X X X X X X X X X X X X X X X X 4: X X X X X X X X X X X X A: 7: G: X X X X X X X X X X X X 5: B: X X X XX XX X +X XX XX XX XX X+ XX XX XXXX + 8: H:X X 6: C: X X X X X X X X X X X X X X X X 7: D: XXX X XXX X XXX X XXX X 8: E: X X X X X X X X X X X X X X X X X X X X X F: X X X X X X X X X X X X X X X X X X X X G: X X X X X X X X X X X X H: X X X X + X X X X + X X X X + 3:

4

4

4

6

TWISTING

F

4

4

+

F

2

4

2

F

+ FIXED

+

4

4

4

6

4

4

4

6

4

4

4

6

5

F

5

5

STING 1 T W I2 3 T W I S T I N2G + 2

4 5

F

5 5

5

+

TWISTING

T W I S T5I N G + 5

5

+ +

TWISTING

1F 5 1

5

5

25 `

+

TWISTING

4

TWISTING

4

F

F5 F

6

+5

5

4

4

5

5

5 F

2

7 F 2

5

3F5 …3.

F

6

4

4

4

4

5

5+

5LO O P2

5F

5

5

+

4

4

5 OP 5 LO

5

F

4

4

4

F

6

2

2

5

5

5

5

2

2

5

5

5

2

5

5

5

5

5

5

5

5 ….

5

4

5

5 5

55

+

4

+

5

+

6

4

4

4

8

4

5

2

5 5

5 6… .

5

5

5 5

FIXED SUPPORTS

4

6

2

5

2

5

5

2

5

2

5

5

5

5

5

5

5

5 7

4

+

4

5

5 7

8 5 …8.

5

LO O P

4

F

2

`

8

5

2

FIXED S U5 PPORT5 S

5

F

+

2

F

25

4

4

F

4

FIXED SUPPORTS

SUPPORTS

2

4

4

F

TWISTING

TWISTING

4

6

4

4

4

6

FIXED SUPPORTS

4

4

6

4

4

4

8

LO O P

5

2

2

5

5

5

5

2

5

5

5

5

2

5

5

5

5

5

5 ….

5

2

5

5

5

5

5

2

5

2

2

5

2

5

5

5

5

5

5

5

5

5

5

5

5 ….

31


S U R FAC E Sur faces are created by weaving together similar chains that maintain a perpendicular grain between one another. The weaving will create strong connection between the modules. 32


F: X X X X XF:XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX X X X X X G: X X X XG:X XX XX XX XX X X XX X X X X X H: X X X XH:+XXXXXXXX ++XX XX XX XX ++X X X X + I: X X X XI: X X X X X X X X X X X X X X 2

1

2

5

5

5

5

5

5

5

n

n

n

n ….

1………..

4

22 22 55

5

55

55

55

55

55

55

22 22 55 55

55

n n n n n n n … n .… .

55

55

nn

nn

55

5

nn

4………… 1 … …1…… … …8. … . … …4… … . .4 … … … 4 … …4 …… …… … … 8 …… …1… … … 1 ..

22 22 55

5

5

nn ……. .

4

5

55

55

n

n

2

2

5

5

5

5

n

4……………

1

n ….

1

33


34


Phase IV

Sy s tem Devel opemen t

35


F IX SUPPORT

A6 E6

B6

F6

FIX SUPPORT

B8

A3 G con.

con.

A3

G

A4

FI X SUPPORT

B9

THE SYSTEM The system includes all successful findings from the studies. A chain structure demonstrates the proper ties of all modules which have been integrated in the system. It also contains an infinity loop and asymmetrical loops made up of sur faces. 36


37


SYSTEM COMPONENTS 38


39


G: X X X X X F X X X X X X X + + H: X X X X + X X X X + X X X X F F 5: + I: X X X X X XX XX 4:

5

5

5

5

n

n ….

n

n

TWISTING 1

1………..

4

6:

TWISTING

+

7:

TWISTING

+

5

5

10 x 2

4x 3

n

4…………………

F

8:

3x1

5

5

5

5 5 5 FIXED SUPPORTS

TWISTING

n

n ….

8……………..

4

F

F

F

F

`

10

n

F

x4

+

n

n

n

4……………

1

+ +

n ….

+

1

LO O P

FIXED SUPPORTS

LO O P

35

x

5

2

x

6

2

x

7

1

x

TO P V I E W H A L F S T R A N D

TO P V I E W 6 S T R A N D S S U R FAC E

STRAND PUSHING AND T WISTING

SYSTEM FINAL MODEL Six strands of Type I weaved together as a linear sur face, when twisted and looped and compressed yield the final model. Strength is achieved through compression and the model can bear the weight of a laptop. 40

S U R FAC E LO O P I N G

8


41


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.