Page 1

     !#"%$&%'(*)+,'  - * )# - " )%.%/10*!23+546)798 :<;! #=> - *?!23+#@10*A'CB DFE *'!GFH>#"JI*K!K!LG3M :N OQP&R!SUTVOXW&Y[Z\O7] O>^C_ YV`aR b `cW&YCde`!fgSUZ\O%hiPU`3jkhk_kS&YlW&YCm*WPUWjn o9pq`3hkSUPUO%hq`ahkOXP&R!SUTVOXZ\O7] O>^COQW&YrYV`>R(YCOVs Z\OaW&YCde`!fgSUZ\O%hr`\] _khCR(YCPU`3hqWvukjkO%PU_qfC`3hiW&YCm*WPUWj t YVW>^CTV_ Z\Oahq`3W&YCde`!fgSUZ\O%hiW&YCm*WPUWj w YVW>^CTVO Z\OaW&YCde`!fgSUZ\O%hrmjk`3yX`3hrW&YCm*WPUWj x YVW>^CTV_ •

827*0X" - $&GA'(c!"zG\ -  A ' D Kg{z.v|!Kg}:.%)z'!+#{%+ - "7J.z - .%#"%.%G\J'JG\ -  B 'a~ {z. D ~ }:.%)l)7X#23+=U'(A€*"7XH>" - .%)VM !2%0*Q03.%23A}g+#" - z+‚4+#23+#ƒA%$&")!" - * ƒ#"!/!)%.%+ }g+54=7H A . B „ *0*1'!27*03$&"#+,+=U'!.4….%2#$&, - +=U)71#0* - !#"c†(Kg03}‡\{Uˆ  290  300  350  )%.%0*!+!"‰"+#ƒ.

3 5 • 1 : 1,75 + − 1,25 . 0,8 = 4 2  1,5  2,5 • • • •

 +#@9+#)%.%/!"79)7)+ - *'!+#)#"%'!!"

 x ∈ (−6; 3]

 −1

1

!+!"{%.%#27*"79+,0* - +#)c)7ŒH - *'!)+#)%.%+#"

 0*

x1 . x2 Š0* √ √  − 2− 3

 0*!2%0*‰+ - *'!)9 - A.%ƒ'!+=>+#)%.%+#" 1 cos 46◦ 2

11π = 3 √ 3 − 2



• cos

• •



 x ∈ (−3; +∞)



)%.%0*A.‰!"1"+#ƒ.

 −2 √ √ x2 − 2 x+ 3 = 0 „ √ √  3+ 2

"

sin 23◦ cos 23◦ ‹

1 sin 46◦ 2

 2 cos 46◦

3 2

 +#@9+#)%.%/!"79)7)+ - *'!+#)#"%'!!"

)%.%0*!+!"‰"+#ƒ.

3x−1 = 9−1 ‹

- +#)%.%"+)7QH - *'!)+#)%.%+#" √ √  2− 3



Š‹

x+6≤3

 x ∈ (−∞; 3)



 3,5

 lg(x − 2) ≤ 3

Š‹

2 x1 +x2 +x1 x2 = √ √  3− 2  2 sin 46◦

1 2

−

1 2

 2 ≤ x ≤ 1000

 2 < x ≤ 1002

 2 ≤ x < 1002

 0 < x < 1000

 − cos x

 sin x

 cos x

 − sin x

 0*!2%0*‰+,"%$U4=>+##"%'!+#) - *'!+#)

!2%0*10* - +#)71.%} ŒH - *'!)+#)%.%+#"

1

2

sin(6π − x) ‹ sin x = 1,16

D

'1.%)%"+ - '(*27

4

[0; π] ‹



)%/!} 0* - +#)%.


:Ž#9Ž#%‘%’!“7”97”Ž#•7”*–!Ž#—#“%–!˜!“˜  (−2; 0)  (−∞; −2) ∪ (0; 1) ∪ (1; +∞)

x(x − 1) <0 (1 − x)(x + 2)

—Š”™

 (−∞; −2)  (0; 1)

š”›*˜!œ%›*˜…Ž•7”*–!7”7”*>ž Ÿ˜!œ%’!¡ ”*“7”—#“˜A%˜!—#“97”¢:£>%›3¤%‘%’!“7”

y = 2x2 − 1 ¥ x ∈ [−3; 1] ™

%‘%›*˜!’Œ˜!“1“Ž#¦ƒ‘ • š”§›*˜!œ%›*˜Ž•7”*–!7”7”*>ž ¡ ”*œ%›>”*“7”—#“˜A%˜!—#“Œ7”¢:£>%›3¤%‘%’!“7” y = x2 −6x+9 ¥ x ∈ (2; 3) ™  −1 0 1  %’!¡ ”“7”*›>”*–(” • ¨V” 4ABC Ž©&”\©>Ž#˜ BC = 2, AC = 3, <ª ACB = 135◦ « š”X›*˜!œ%›*˜zŽ•7”*–!7” ©U¬&œ­…‘%7”*“7”97” AB ™ p p p √ √ √  13 − 3 2  13 + 12 2  13 + 6 2  %‘%›*˜!’Œ˜!“1“Ž#¦ƒ‘ •

 17

 −1

¨V”

4ABC

sin <ª CAB ™  0,4

5x + 2y = 4

4x + 3y = 6

¨V”•%Ž#9Ž#%‘%’!“7”7”9—#‘%—#“Ž#¡ ”*“7”  x+y =2

7

7 5

 0,8





7 5

‘

¯˜A•%Ž#%‘%“Ž,7”£>•7”*–!Ž#%‘%Ž#“˜

:Ž#9Ž#%‘%’!“7”97”Ž#•7”*–!Ž#—#“%–!˜!“˜

q=3

|x − 5| = 2 − 4x

 1« 2

4 25

q=4

x2 ≤ 4x − 3

—Š”™ 5

—Š”•%ŽŠ”*œ%%‘c°%•%‘V™ q=5



 (−∞; 1] ∪ [3; +∞)  (1; 3)

 3−3

 −3

 33

 p = −3



¯˜A•%Ž#%‘%“Ž,7”£>•7”*–!Ž#%‘%Ž#“˜

š”…›*˜!œ%›*˜ŒŽ•7”*–!˜…°%•%˜A‘%¦ƒ–!Ž©>Ž#%‘%Ž#“˜Œ˜!“‰›*˜A•%Ž#%‘%“Ž7”,£>•7”*–!Ž#%‘%Ž#“˜

p=0 7 3

x2 − x + 3p = 0

p=3

−

7 3

—Š”•7”*–!%‘°%•%‘V™



4 3

š”›*˜!œ%›*˜‰Ž,•7”*–!Ž#°˜\ž Ÿ˜!œ3Ž#¡:‘%’!“‚˜!“›*˜A•%Ž#%‘%“Ž…7”£>•7”*–!Ž#%‘%Ž#“˜ 1

%‘%›*˜!Ž˜!“‰“Ž#¦ƒ‘

—Š”™

%‘%›*˜A‰˜!“1“Ž#¦ƒ‘

1 = 3−3

3



%‘%›*˜!Ž˜!“‰“Ž#¦ƒ‘

š”a›*˜!œ%›*˜QŽ‚•7”*–!Ž# 

 −1

−1

x2 − 3x + q = 0

 (−∞; 1) ∪ (3; +∞)  [1; 3]

• log3

 xy = 10

AC = 5, BC = 4, sin <ª ABC =

:Ž#9Ž#%‘%’!“7”97”Œ£>•7”*–!Ž#%‘%Ž#“˜ 

Ž,–9—#‘%œ7”™

 x2 + y 2 = 0

Ž®©&”\©>Ž#˜



 −1

±

7

%‘%›*˜!Ž˜!“‰“Ž#¦ƒ‘

3x2 + 4x − 7 = 0 ™ 4 − 3

x2 + 6x − 7 = 0 ™  −7


² ³\´Uµ¶>·#¸&¹lº7³a»!¼%µ%·Š³*º7³*¹7³a½A¾3¿%¸UÀ…º½!·#¹[»X¼%¿7³*»!½!¸&ÁA¸&Â3Ã#º[¹%¿%µ%¸&ÁA¸&Â%º%µ%¾v·¾>³*¹Ã#¹ÅÄAÆJµ Ç %µ ¼½!¹Ã#º¶>ȳ‚ÄFÉ9Ã*Ê Ë Æ É  Ä √

√ √  12( 6− 2)

• •

√ √  12( 6+ 2)

6

Ó¿%½!Ô!¹‚º7³Œ´U»*¶>Ò%µ%Õ:¿%Ã#º%µ%¹Ã,ºÃ#Í%Ã#¹º%µcÍ%µ%·#Â7³9·,¿7³*ȃÂ%µ%Í%º%µÒ%µ%Õ:¿%µ‚Ã*Ê  Ë(Ö  Ë3×  ×*Ö

 12 

É(×

¾!¶>¹%µ%Ô%Ù7·#¸7´U¸&¿ÀÚ³Aہ³܌Ý(Ã#Â%µµ‚Ë9Í%Ã#¿%º%µ¹½A¼%¾3µVÙ%¼½9·#¶>Í7³*Ã#ºº7³FÍ%µ%º·#û(³\´UÔ!¹®´U»!Ã*Ï Þ ØÃ#¹‚ ¿%½!Ô!¹º½!·#¹%¹7³Œ´U»!Ã#¹Ã,µ%ȃ»(³\´>Ã#º%µ¹½A¼%¾3µ´&³9·Š³9Ý(Ã#Â%µÃ*Ê 

Ì µ7³*Á½Aº7³*Â%µ%¹Ã1º7³‚Í%Ã#¹%µ%¿%µ%¸&ÁA¸&Â%º%µ%¾>³ ABCD ·Š³ BD = 27 − 3, AC = 32 µ ·#ɼ%¿%Ã#·#µ%Í7³*¹Î»c¹½FÍ%¾>³ O Ïlо*½ <Ñ BOC = 105◦, ¹ ½Â%µ%ÒÃ#¹½Jº7³Í%Ã#¹%µ%¿%µ%¸&ÁA¸&Â%º%µ%¾>³ ABCD Ã,¿7³*»!º½9º7³Ê

1 10



3 10



1 3



º%µ%¾*½!Ԍ½!¹1¹Ã#ȃµ

ßÝ!½A¿%¸&¹1º7³,Í%µ%·#Â7³*¹7³Ù3¾3¿7³*¹º%µ1º7³Ú×>Ù!¾*½Aµ%¹½Ú·Š³,¼½,Á½!Â3Ã#à:µ‰½!¹1á!á,µ1¼½\â à ³*Â%¾3µ9½!¹®Æ*ÖÄ!Ù!Ã*Ê  É!Ö!Ö!Ö  Ü(Æ*Ö!Ö  Ü!É!Ö!Ö  ÉÄA×*Ö ã ½FÍ%¾3µ%¹à M µ N ´>Ã#Â%Ô!¹®·#¹%¿7³*º7³*¹7³ AC º7³ 4ABC º7³…¹%¿%µ®¿7³*»!º%µ‰Í7³*·#¹%µVÏ䧿7³*»!µ ¼%¿%Ã#È M µ N Ùl¶>·#¼½A¿%ôUº%µÎº7³ BC Ùr¼%¿%Ã#·#µ%Í7³*¹ AB ·#¸&½!¹%»!Ã#¹º½c»¹½FÍ%¾3µ%¹à P µ Q Ï7о*½ AB = 24 Ù¹½ AP + AQ =  12  24  36  º%µ%¾*½!ý!¹‰¹Ã#ȃµ å ¸&à½A¾3¿%¸UÀ…º½!·#¹  ¾>³*¹½ T Â3Ã5À…µcº7³ 5

k ·®ÒÃ#º%¹%¸&¿ O µÎ¿7³\´Uµ¶>·ËJî¼%¿%Ã#¾>³*¿7³*º7³´>½A¼%µ%¿7³*¹Ã#Â%º7³ AT Ù k Ïо*½ AO = 5 Ù¹½ AT = 3 4  º%µ%¾*½!ý!¹‰¹Ã#ȃµ

É

Profile for stoyan bordjukov

2006.18.08 Висше транспортно училище "Т.Каблешков"  

2006.18.08 Висше транспортно училище "Т.Каблешков"  

Profile for bgmath
Advertisement