Download Complete Annual plant reviews plant nuclear structure genome architecture and gene regulati

Page 1


AnnualPlantReviewsPlantNuclearStructure

GenomeArchitectureandGeneRegulationDavid Evans

https://ebookname.com/product/annual-plant-reviews-plantnuclear-structure-genome-architecture-and-gene-regulationdavid-evans/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Annual Plant Reviews Plant Mitochondria 1st Edition

David C. Logan

https://ebookname.com/product/annual-plant-reviews-plantmitochondria-1st-edition-david-c-logan/

Annual Plant Reviews Insect Plant Interactions Volume 47 Claudia Voelckel

https://ebookname.com/product/annual-plant-reviews-insect-plantinteractions-volume-47-claudia-voelckel/

Annual Plant Reviews Plant Polysaccharides Biosynthesis and Bioengineering Volume 41 Peter Ulvskov

https://ebookname.com/product/annual-plant-reviews-plantpolysaccharides-biosynthesis-and-bioengineering-volume-41-peterulvskov/

Annual Plant Reviews Biology of the Plant Cuticle 1st Edition Markus Riederer

https://ebookname.com/product/annual-plant-reviews-biology-ofthe-plant-cuticle-1st-edition-markus-riederer/

Plant Systems Biology Annual Plant Reviews Volume 35

1st Edition Gloria Coruzzi

https://ebookname.com/product/plant-systems-biology-annual-plantreviews-volume-35-1st-edition-gloria-coruzzi/

Plant Hormone Signaling Annual Plant Reviews Volume 24

1st Edition Peter Hedden

https://ebookname.com/product/plant-hormone-signaling-annualplant-reviews-volume-24-1st-edition-peter-hedden/

Biochemistry of Plant Secondary Metabolism Annual Plant Reviews Volume 40 Second Edition Michael Wink

https://ebookname.com/product/biochemistry-of-plant-secondarymetabolism-annual-plant-reviews-volume-40-second-edition-michaelwink/

Functions and Biotechnology of Plant Secondary Metabolites Annual Plant Reviews Volume 39 2nd Edition

Michael Wink

https://ebookname.com/product/functions-and-biotechnology-ofplant-secondary-metabolites-annual-plant-reviews-volume-39-2ndedition-michael-wink/

Annual Plant Reviews Volume 39 Functions and Biotechnology of Plant Secondary Metabolites Second edition Michael Wink

https://ebookname.com/product/annual-plant-reviewsvolume-39-functions-and-biotechnology-of-plant-secondarymetabolites-second-edition-michael-wink/

ANNUALPLANTREVIEWS VOLUME46

ANNUALPLANTREVIEWS

PlantNuclearStructure, GenomeArchitecture andGeneRegulation

DepartmentofBiologicalandMedicalSciences

OxfordBrookesUniversity,Oxford,UK

KatjaGraumann

DepartmentofBiologicalandMedicalSciences

OxfordBrookesUniversity,Oxford,UK

JohnA.Bryant

Biosciences,UniversityofExeter,Exeter,UK

Thiseditionfirstpublished2013. C 2013byJohnWiley&Sons,Ltd

Wiley-BlackwellisanimprintofJohnWiley&Sons,formedbythemergerofWiley’s globalScientific,TechnicalandMedicalbusinesswithBlackwellPublishing.

Registeredoffice: JohnWiley&Sons,Ltd,TheAtrium,SouthernGate,Chichester, WestSussex,PO198SQ,UK

Editorialoffices: 9600GarsingtonRoad,Oxford,OX42DQ,UK

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK 111RiverStreet,Hoboken,NJ07030-5774,USA

Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabout howtoapplyforpermissiontoreusethecopyrightmaterialinthisbookpleaseseeour websiteatwww.wiley.com/wiley-blackwell.

Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedin accordancewiththeUKCopyright,DesignsandPatentsAct1988.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrieval system,ortransmitted,inanyformorbyanymeans,electronic,mechanical, photocopying,recordingorotherwise,exceptaspermittedbytheUKCopyright,Designs andPatentsAct1988,withoutthepriorpermissionofthepublisher.

Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedas trademarks.Allbrandnamesandproductnamesusedinthisbookaretradenames, servicemarks,trademarksorregisteredtrademarksoftheirrespectiveowners.The publisherisnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthor(s)haveused theirbesteffortsinpreparingthisbook,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisbookandspecifically disclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.It issoldontheunderstandingthatthepublisherisnotengagedinrenderingprofessional servicesandneitherthepublishernortheauthorshallbeliablefordamagesarising herefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofa competentprofessionalshouldbesought.

LibraryofCongressCataloging-in-PublicationDatahasbeenappliedfor ISBN978-1-1184-7245-3(hardback)

AcataloguerecordforthisbookisavailablefromtheBritishLibrary. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthat appearsinprintmaynotbeavailableinelectronicbooks.

Coverimage:ImagessuppliedbyKatjaGraumann

Coverdesignbywww.hisandhersdesign.co.uk

Setin10/12ptPalatinobyAptara R Inc.,NewDelhi,India

FirstImpression2013

AnnualPlantReviews

Aseriesforresearchersandpostgraduatesintheplantsciences.Eachvolume inthisseriesfocusesonathemeoftopicalimportanceandemphasisisplaced onrapidpublication.

EditorialBoard:

Prof.JeremyA.Roberts (Editor-in-Chief),PlantScienceDivision,Schoolof Biosciences,UniversityofNottingham,SuttonBoningtonCampus,Loughborough,Leicestershire,LE125RD,UK; Prof.DavidE.Evans, DepartmentofBiologicalandMedicalSciences,Oxford BrookesUniversity,HeadingtonCampus,OxfordOX30BP,UK; DrMichaelT.McManus, InstituteofMolecularBioSciences,MasseyUniversity,PalmerstonNorth,NewZealand; DrJocelynK.C.Rose, DepartmentofPlantBiology,CornellUniversity, Ithaca,NewYork14853,USA.

Titlesintheseries:

1.Arabidopsis

EditedbyM.AndersonandJ.A.Roberts

2.BiochemistryofPlantSecondaryMetabolism

EditedbyM.Wink

3.FunctionsofPlantSecondaryMetabolitesandtheirExploitationin Biotechnology

EditedbyM.Wink

4.MolecularPlantPathology

EditedbyM.DickinsonandJ.Beynon

5.VacuolarCompartments

EditedbyD.G.RobinsonandJ.C.Rogers

6.PlantReproduction

EditedbyS.D.O’NeillandJ.A.Roberts

7.Protein–ProteinInteractionsinPlantBiology

EditedbyM.T.McManus,W.A.LaingandA.C.Allan

8.ThePlantCellWall

EditedbyJ.K.C.Rose

9.TheGolgiApparatusandthePlantSecretoryPathway

EditedbyD.G.Robinson

10.ThePlantCytoskeletoninCellDifferentiationandDevelopment

EditedbyP.J.Hussey

11.Plant–PathogenInteractions

EditedbyN.J.Talbot

12.PolarityinPlants

EditedbyK.Lindsey

13.Plastids

EditedbyS.G.Moller

14.PlantPigmentsandtheirManipulation

EditedbyK.Davies

15.MembraneTransportinPlants

EditedbyM.R.Blatt

16.IntercellularCommunicationinPlants

EditedbyA.J.Fleming

17.PlantArchitectureandItsManipulation

EditedbyC.G.N.Turnbull

18.Plasmodeomata

EditedbyK.J.Oparka

19.PlantEpigenetics

EditedbyP.Meyer

20.FloweringandItsManipulation

EditedbyC.Ainsworth

21.EndogenousPlantRhythms

EditedbyA.HallandH.McWatters

22.ControlofPrimaryMetabolisminPlants

EditedbyW.C.PlaxtonandM.T.McManus

23.BiologyofthePlantCuticle

EditedbyM.Riederer

24.PlantHormoneSignaling

EditedbyP.HaddenandS.G.Thomas

25.PlantCellSeparationandAdhesion

EditedbyJ.R.RobertsandZ.Gonzalez-Carranza

26.SenescenceProcessesinPlants

EditedbyS.Gan

27.SeedDevelopment,DormancyandGermination

EditedbyK.J.BradfordandH.Nonogaki

28.PlantProteomics

EditedbyC.Finnie

29.RegulationofTranscriptioninPlants

EditedbyK.Grasser

30.LightandPlantDevelopment

EditedbyG.Whitelam

31.PlantMitochondria

EditedbyD.C.Logan

32.CellCycleControlandPlantDevelopment

EditedbyD.Inz ´ e

33.IntracellularSignalinginPlants

EditedbyZ.Yang

34.MolecularAspectsofPlantDiseaseResistance

EditedbyJ.Parker

35.PlantSystemsBiology

EditedbyG.M.CoruzziandR.A.Guti ´ errez

36.TheMoss Physcomitrellapatens

EditedbyC.D.Knight,P.-F.PerroudandD.J.Cove

37.RootDevelopment

EditedbyT.Beeckman

38.FruitDevelopmentandSeedDispersal

EditedbyL.Østergaard

39.FunctionandBiotechnologyofPlantSecondaryMetabolites

EditedbyM.Wink

40.BiochemistryofPlantSecondaryMetabolism

EditedbyM.Wink

41.PlantPolysaccharides

EditedbyP.Ulvskov

42.NitrogenMetabolisminPlantsinthePost-genomicEra

EditedbyC.FoyerandH.Zhang

43.BiologyofPlantMetabolomics

EditedbyR.D.Hall

44.ThePlantHormoneEthylene

EditedbyM.T.McManus

45.TheEvolutionofPlantForm

EditedbyB.A.AmbroseandM.D.Purugganan

2.9TheplantNEinmeiosis

2.11.1Nucleirepositioninginresponseto

2.11.2FunctionsoftheplantNEduringviralinfection47

4.7Isthereatrans-nuclearenvelopecomplexinplantsthat linksthenucleoskeletontothecytoskeleton?

4.8Roleofthenuclearlaminaaspartofthenucleoskeleton102

4.9Structuralevidenceforthenucleoskeleton

4.10NuMAinplants

4.11Matrixattachmentregions(MARs)andtheroleofthe nucleoskeletoninchromatinorganization

4.12Chromocentresandtheplantnucleoskeleton

4.13Longcoiled-coilproteinsinplantsandtheirroleinnuclear organization:candidatesforplaminsandnucleoskeletal proteins?

4.14Actinandmicrotubulesinthenucleus

4.15Conclusions

5GenomicsandChromatinPackaging

5.1Chromatincomponentsandstructureinhighereukaryotes123

5.2Histonesandnucleosomefibre

5.2.1Histonevariants

5.2.2Histonemodifications

5.2.3Nucleosomedynamics

5.3Linkerhistoneandthehigherorderchromatin-orderfibre138

5.3.1Theelusivehigherorderchromatinfibre

EmmanuelVanrobays,M ´ elanieThomasandChristopheTatout 6.1Heterochromatinstructure

6.1.3Non-histoneproteinbinding

6.1.4Heterochromatinisanepigeneticstate

6.2Heterochromatinorganization

6.2.1Heterochromatinandnucleararchitecture

6.2.2Recruitmentofheterochromatinatthenuclear periphery

6.2.3Higherorderofchromatinorganization

6.3Functionalsignificanceofheterochromatinpositioning176

6.3.1Centricheterochromatindirectschromosome

6.3.2Spatialpositioningofheterochromatinaffects transcriptionalactivity178

6.3.3Heterochromatinpositioningprotects againstgenomeinstability179 6.4Perspectives180

7TelomeresinPlantMeiosis:TheirStructure,Dynamics andFunction

NicolaY.Roberts,KimOsman,F.ChrisH.Franklin,MonicaPradillo, JavierVaras,JuanL.SantosandSusanJ.Armstrong 7.1Introduction

7.2.1Telomerebindingproteins

7.2.2Arabidopsistelomerebindingproteins

7.2.3DNArepairproteins

7.3Thebehaviourofthetelomeresinmeiosis

7.3.1Thebouquet

7.3.2Aroleforthebouquet

7.4.1Meiosisin A.thaliana telomere-deficientlines206

7.5HowarethetelomeresmovedinmeioticprophaseI?208

7.5.1Colchicinedisruptsmeioticprogression

7.5.2Theroleofactinintelomeremovement

7.6Componentsofthenuclearenvelope

7.7Componentsoftheplantnuclearenvelope

8TheNuclearPoreComplexinSymbiosisandPathogenDefence229

AndreasBinderandMartinParniske 8.1Introduction

8.2Thenuclearporeandplant-microbesymbiosis

8.2.1Commonsignallinginarbuscularmycorrhizaand root-nodulesymbiosis

8.2.2Symbioticsignallingatthenucleus

8.2.3Symbioticdefectsin ljnup85,ljnup133 and nena mutants

8.2.4Howdonucleoporinsfunctionin plant-microbesymbiosis?

8.3Thenuclearporeandplantdefence

8.3.1Plantimmuneresponsescanbetriggeredby pathogen-associatedmolecularpatternsand microbialeffectors 235

8.3.2AtNUP88andAtNUP96arerequiredforbasaland NB-LRR-mediatedplantimmunity 236

8.3.3Mechanismsofnucleoporin-mediatedplant defencesignalling 237

8.4Specificity,redundancyandgeneralfunctionsofplant nucleoporins 239

8.4.1TheNUP107-160sub-complex

8.4.2Hormonesignalling

8.4.3Development,floweringtime,stresstoleranceand RNAtransport

8.5Challengesandconclusion

Colorplate(betweenpages104and105)

LISTOFCONTRIBUTORS

SusanJ.Armstrong SchoolofBiosciences

UniversityofBirmingham

B152TT UK

AndreasBinder FacultyofBiology,Genetics,UniversityofMunich(LMU) GroßhadernerStraße4 82152Martinsried Germany

JoannaBoruc DepartmentofMolecularGenetics

TheOhioStateUniversity Columbus OH43210 USA

JohnA.Bryant Biosciences

UniversityofExeter Exeter

EX44QD,UK

DavidE.Evans DepartmentofBiologicalandMedicalSciences FacultyofHealthandLifeSciences

OxfordBrookesUniversity HeadingtonCampus Oxford

OX30BP UK

F.ChrisH.Franklin SchoolofBiosciences

UniversityofBirmingham

B152TT UK

MartinW.Goldberg

DepartmentofBiologicalandBiomedicalSciences UniversityofDurham

Durham

DH13LE UK

KatjaGraumann DepartmentofBiologicalandMedicalSciences FacultyofHealthandLifeSciences

OxfordBrookesUniversity HeadingtonCampus

Oxford OX30BP UK

IrisMeier DepartmentofMolecularGenetics

TheOhioStateUniversity Columbus

OH43210 USA

EugenioSanchez-Moran SchoolofBiosciences UniversityofBirmingham

B152TT UK

KimOsman SchoolofBiosciences UniversityofBirmingham

B152TT

UK

MartinParniske FacultyofBiology,Genetics UniversityofMunich(LMU) GroßhadernerStraße4 82152Martinsried Germany

MonicaPradillo DepartmentodeGenetica FacultaddeBiologia UniversidadComplutense

Madrid

28040Spain

NicolaY.Roberts SchoolofBiosciences UniversityofBirmingham

B152TT UK

JuanL.Santos DepartmentodeGenetica FacultaddeBiologia UniversidadComplutense

Madrid 28040Spain

ChristopheTatout GReDLaboratory

UMRCNRS6293

INSERMU1103

UniversityBlaisePascal

Aubi ` ere

France

M ´ elanieThomas GReDLaboratory

UMRCNRS6293

INSERMU1103

UniversityBlaisePascal

Aubi ` ere

France

EmmanuelVanrobays GReDLaboratory

UMRCNRS6293

INSERMU1103

UniversityBlaisePascal

Aubi ` ere

France

JavierVaras DepartmentodeGenetica

FacultaddeBiologia

UniversidadComplutense

Madrid

28040Spain

XiaoZhou

DepartmentofMolecularGenetics

TheOhioStateUniversity

Columbus OH43210 USA

PREFACE

Thisvolumewasconceivedtobringtogetherreviewsdescribingrecent advancesinknowledgeandunderstandingofplantnuclearstructuresand functions,includingthatofthenuclearenvelope.Thebookisparticularly timelyinthatrecentprogresshasbeenrapidinkeyareasincludingdescriptionandcharacterizationofproteinsofthenuclearenvelopeandnuclear porecomplex,novelinsightsintonucleoskeletalstructures,aswellasdevelopmentsrelatedtochromatinorganization,functionandgeneexpression. Togethertheseadvancesprovideaframeworkforcomparativeunderstandingofnuclearenvelopestructureandfunctioninarangeoforganismsand forunderstandingitsevolution.

CurrentknowledgeofthedynamicstructureofplantDNAandchromatin isdiscussedbySanchez-MoraninChapter5.Despiteintensivestudyof histonesandotherchromosome-associatedproteins,interactionstoachieve thecomplexstructuresrequiredbothininterphaseandduringcelldivision remainpoorlyunderstood.Thestructuresrequireseverallevelsoforganization,thefirstbeingthenucleosomalfibrecomprisingDNAwrappedaround acoreofhistones.Thisisadynamicstructureandmechanismsforitsremodellingaredescribed.Thenucleosomalfibreisthenwoundintoastructure termedthechromatinfibre,whichisarrangedinloopsassociatedwitha multi-proteinchromosomescaffold,thethirdlevelofstructure.Thisinterphasestructureundergoesrapiddynamicchangeinmitosiswithfurther condensationforreplicationanddivision.Theimportanceofthestructural organizationofchromatinforprocessessuchastranscription,replication, repair,recombination,condensationandsegregationisalsodiscussed.Asin metazoans,plantchromatinisorganizedintoregionsofhetero-andeuchromatinwithheterochromatinadjacenttotheNE.

Recentadvancesinunderstandingheterochromatinstructurearepresented inChapter6byVanrobays etal. Heterochromatin,originallythoughtto becondensed,gene-poorand‘silent’,isnowknownoftentobepreferentiallylocalizedtothenuclearenvelopeandnucleolusanditssignificance isbecomingclearasanepigeneticstaterequiredformanyfunctionsofthe genome,includinggeneregulation,segregationofchromosomesandmaintainingstabilityofthegenome.Despitelimitedknowledgeofit,inmost speciesheterochromatinisthemainformofchromatinandkeyquestions remaintobeanswered.HowisspatialorganizationofheterochromatinmaintainedthroughthecellcycleasDNAisreplicated,chromatincondensed,and thenuclearenvelopedisruptedandreformed?Interactionsbetweennuclear

envelope,nucleoskeletonandchromatinarelikelytobeverysignificantand arediscussedtogetherwithothertheoriesforheterochromatinpositioning.

Plantgenomesvarygreatlyinsizebutinallcasesthegenomeiscontainedwithinaverysmallcompartmentanditisclearthatcomplexthreedimensionalorganizationisneededinorderforthemanyprocessesrequired forfunction.Thisthree-dimensionalstructurerequiresinteractionsbetween chromatin,theenvelope,thenuclearporesandtherestofthecell.InChapter4,Goldbergdiscussesfromanultrastructuralandbiochemicalperspective thepresenceofanequivalentofthehighlyorderedlaminaandnucleoskeleton describedinmetazoans.Suchastructureappearstoberequiredfornuclear function,butuntilrecentlyitsproteincompositionhaseludedplantscientists. Plantcellshavenoproteinshomologoustothelaminsorotherintermediate filamentprotein.RecentelectronmicroscopestudiesinGoldberg’slaboratory oftheinnerfaceoftheplantnuclearenveloperevealafilamentousstructure interconnectingtheNPCs.Thisappearstobeorganizedsimilarlytothelaminaof Xenopus oocytes.Proteincandidatesforaplantnucleoskeletonhave recentlybeensuggestedfromanumberofapproaches;theselongcoiled-coil nuclear-localizedproteinsshowsomesimilaritiestonucleoskeletalproteins ofthemetazoansandGoldbergpresentsthegrowing,butasyetincomplete, evidencefortheirrole.Thelikely(directorindirect)interactionsoftheseproteinswiththeproteinsofthenuclearenvelopeviaa‘LinkerofNucleoskeletonandCytoskeleton’complexisalsoconsideredinChapter2byGraumann andEvans.Therein,theauthorsdescribethat,incommonwithmetazoans, plantshaveonekeyfamilyofproteinsthatinotherkingdomsconstitutes theinnernuclearenvelopecomponentofthisbridgingcomplex,namelythe Sad1/Unc84(SUN)-domainproteinfamily.Absenceofavarietyofother innernuclearenvelopecomponentsinvolvedinnuclearenvelope-chromatin interactionsinotherkingdomssuggeststhattheSUN-domainproteinsplay aparticularlysignificantandbroaderroleinplants.Inmanyrespectshowever,thehigherplantSUN-domainproteinsshowremarkableconservation instructuretothoseofotherorganisms.Theyaresmallerthantheirmetazoan counterparts,beingclosestinsizetotheyeasthomologueSad1.Inaddition, theauthorsdiscussfirstevidenceofproteinsinteractingwithSUN-domain proteinsinplantsthatshowsimilarityinstructureandmechanismtothe Klarsicht/Anc-1/SyneHomology(KASH)-domainproteinsofotherkingdoms,whichcompletethenucleo-cytoskeletalbridgingcomplexes.Chapter2 alsofocusesonotherproteincomponentsoftheplantnuclearenvelopeas wellasitslipidcompositionandhighlightsmanyofthecellularandnuclear processesinwhichtheplantnuclearenvelopeplayskeyroles.

Structureandpositionofchromosomesmustbeachievedbothforsuccessfulmitosisandmeiosis.EvidenceforSUN-domainproteininvolvementin thebreakdownandreformationofthenuclearenvelopeinplantmitosisis presentedinChapter2togetherwithsuggestionsofconservedmechanisms betweenkingdoms.Meiosis,whilemorecomplex,hasreceivedconsiderable attentionandtheroleoftelomeresispresentedbyRoberts etal. inChapter7,

whorevealemergingevidencefortheirroleinearlyeventsinthemovementandsynapsisofhomologouschromosomes.StudiesinArabidopsis suggestthatpairedtelomereslooselyclusteratthenuclearperipheryinmeioticprophase1;itissuggestedthatthisfacilitateschromosomealignment andsynapsis.Theproteinsinvolvedintheattachmentoftelomerestothe nuclearenveloperemainelusive;however,incommonwiththeyeastand metazoans,aroleforSUN-domainproteinsissuggested.Explorationofthe structuralproteininteractionsinmeiosisisbeingvigorouslypursued.

Recentcharacterizationofproteinsoftheplantnuclearporecomplex(NPC) hasrevealedthatthestructuremorecloselyresemblesthoseofvertebrates thanyeastorfungi.InChapter3,Zhou etal. describethesignificantprogress maderecentlyinidentifying30constituentproteinsoftheplantNPCaswell ascharacterizingplantNPCstructure.WhiletheoverallarchitectureofNPCs isconservedineukaryotes,theplantNPCaresetapartbyseveralunique featuresandabsenceofanumberofvertebratenucleoporins.Significantly, theanchorageofRanGAP,involvedinthegenerationoftheRanGTP/GDP gradientrequiredfornuclearimportandexport(amechanismconserved betweenkingdoms)hasbeenshowntodiffersignificantlybetweenplants andotherorganisms.Inmammals,forinstance,RanGAPisanchoredtothe porecomplexbysumoylation.Inplants,thisfunctionistakenoverbyinteractionwithproteinsassociatedwiththenuclearporecomplextermedtheWPP (tryptophanprolineproline)interactingproteins(WIPs)andWPPinteracting tail-anchoredproteins(WITs).Apartfromstructuraldifferences,theauthors alsodiscussplant-specificfunctionsandnon-traffickingprocessesthatplant nucleoporinsareinvolvedin,includingmitoticfunctions,plantdevelopment, hormoneandabioticstressresponsesandplant-microbeinteractions.ThelattertopicistheprimaryfocusofChapter8byBinderandParniske.Using Lotus japonicus asamodelsystem,lossoffunctionmutantsofseveralnucleoporins resultinimpairedmycorrhizalassociationaswellasroot-nodulesymbiosis linkedtofailureofnuclearcalciumsignalling.In Arabidopsisthaliana, nucleoporinshavebeenshowntoberequiredforthetwomajorformsofresponseto fungalpathogens,namelypathogen-associatedmolecularpattern(PAMP)triggeredanddiseaseresistance(R)gene-mediateddefencesignalling.Thisis presentedinthecontextofexpandingknowledgeofthenuclearporecomplex andotherproteinsofthenuclearenvelopeandsuggestsimportanttargets forattentioninrelationtotheintroductionofnitrogenfixationintocereals andinthedevelopmentofcropsshowingenhancedresistancetofungi.The authorsalsofocusonthechallengesofcorrelatingspecificfunctionswith individualnucleoporinsduetothecomplexityofinteractionsandfunctions ofNPCcomponentsandfunctionalredundancies.

Itisevidentthatexplorationofplantnuclearstructure,genomearchitectureandgeneregulationhaswidespreadimplicationsforcropimprovement andfoodsecurity.MovementofthenucleusoccurringasstressanddevelopmentalresponsesarepresentedinChapter2byGraumannandEvans andincludemovementinintenselight,duetotouchandviralandfungal

infection.Suchmovementsarelikelytobesignificantinplanttoleranceto stressandinfectionandtoinvolvenucleo-cytoskeletalbridgingcomplexes atthenuclearenvelope.Thepositionaleffectsofchromatinstructureand thestructureofthenucleusongeneexpression,discussedinChapter6by Vanrobays etal., suggestanareawithconsiderablepotentialforexploration astoolstostudygenetargetingtosubnuclearlocalizationsbecomeavailable. Ithasyettobeestablishedwhetherlocalizationtothenuclearperiphery, porecomplexorotherregionsofthenucleusinducesarepressiveoractivationeffectinrespecttogeneexpression.Sucheffects,ifreproducible,have considerablepotentialfordevelopment.Perhapsthemostcomprehensively studiedrolefortheplantnuclearstructureswithwidespreadsignificance concernstheroleofthenuclearporecomplexinfungalpathogenesisand symbiosis.

Thereisaveryclearneedtoexpandknowledgeofproteininteraction networksatthenuclearenvelopeinvolvingcytoskeleton,nucleoskeletonand chromatincomponents.Studyofthenuclearenvelopeproteomehasbeen heldbackbyacombinationoflimitedinterestbyresearchersandthetechnical difficultiesofisolatingandanalysingit.Recentadvances–theidentification ofSUNdomainproteinsandfirstevidenceforalinkerofnucleoskeletonand cytoskeletoncomplex,thecharacterizationofmorethan30nucleoporinsand increasingfunctionalevidenceandthetentativecharacterizationofaplant lamina–allprovideaframeworkforrapidadvancescoupledwithincreased understandingofchromatinstructureandfunction.Giventheoutstanding importanceofthenucleusandofepigeneticfactors,weanticipatethatthe studyofplantnuclearstructure,genomearchitectureandgeneregulation willplayaverysignificantroleinthenearfuture.

Asknowledgeandunderstandingofthestructureandpropertiesof thenucleusandnuclearenvelopeexpand,wecometantalizinglycloser tounderstandingtheoriginsofthestructuresoftheeukaryoticcell.John Bryant(Chapter1)usestheinformationpresentedtogetherwithknowledge ofreplicationofnuclearDNAandtheimportofthereplicationproteinsto presentanddevelopcurrenttheoriesoftheoriginsofthenucleusandits envelope.Theearlypresenceofthenucleusandnucleoskeleton,predating thearrivalofchloroplastsandmitochondriaintheproto-eukaryoticcelland theprobableformationofthenuclearenvelopefrominvaginationsofthe plasmamembranearediscussedinthelightofthedevelopmentofkeyfeaturesofthehigherplantnucleus.Justaswehopethatpresentingadvancesin understandingthestructureandfunctionoftheplantnucleuswillstimulate researchinthisfield,itisequallyourhopetheseadvanceswillresultin betterappreciationoftheiroriginsnotonlyinplantsbutacrosstheordersof livingthings.

ACKNOWLEDGEMENTS

TheeditorswishtoacknowledgethecontributionofProfessorJ.S.(Pat) Heslop-HarrisonandDrTrudeSchwarzacher,DepartmentofBiology,UniversityofLeicester,UKtotheinceptionanddevelopmentofthisvolume. Theyalsowishtorecognizethecontributionofcolleaguesworkingonthe nuclearenvelopeandonnuclearstructureandfunctionwhoseresearchprovidedinspirationfortheworkpresentedhere.DEandKGacknowledgethe supportoftheLeverhulmeTrustundergrantF/00382/HandforanEarly CareerFellowshipforKG.

AnnualPlantReviews (2013) 46,1–18

http://onlinelibrary.wiley.com doi:10.1002/9781118472507.ch1

Chapter1 INTRODUCTION:MYSTERIES, MOLECULESAND MECHANISMS

Abstract: Thisbriefchaptermentionsthemainstructuralandfunctionalfeatures ofplantnucleiandindoingso,providesaverygeneralintroductiontootherchaptersinthebook.Italsocoversaspectsthatarenotfeaturedelsewhere,especiallythe replicationofnuclearDNAandtheimportofthereplicationproteins.Throughout thechapterthereisanunderlyingthemeofevolution,relatingbothtothesimilaritiestoanddifferencesfromtheArchaeaandtothepossibleevolutionaryorigins ofthenucleus.

Keywords: Archaea;DNAreplication;evolution;nuclearenvelope;nuclearlocalizationsignal;origin;proteinimport

1.1DarwinandMargulisrevisited

InafamouslettersentinJuly1879toJosephHooker,theDirectorofKew Gardens,CharlesDarwindescribedtheoriginofthefloweringplantsas‘an abominablemystery’.Over130yearslater,themysteryseemstobesolved, ifnotindetail,atleastingeneralterms.Itisnowthoughtthatflowering plantsdivergedfromalineageofseedferns(nowatotallyextinctgroup) inthelateJurassicorearlyCretaceousperiod(Doyle,2006,2008).Based onextensivephylogeneticanalysis,thelivingplantthatmostresemblesthe earliestangiosperms(i.e.whichisatthebaseoftheangiospermphylogenetic tree)is Amborellatrichopoda,asemi-climbingshrubonlyfoundintherain forestsofNewCaledonia.So,whileasolutiontothatmysteryhasbeen found,afurther,andperhapsmorefundamentalmysteryremains.Itisa

AnnualPlantReviewsVolume46:PlantNuclearStructure,GenomeArchitectureandGeneRegulation, FirstEdition.EditedbyDavidE.Evans,KatjaGraumannandJohnA.Bryant.

C 2013JohnWiley&Sons,Ltd.Published2013byJohnWiley&Sons,Ltd.

mysterythatinvolvesnotjustfloweringplantsbutalleukaryotesandatthe beginningofthe21stcenturyitisstillnotcompletelysolved.Thatmystery istheoriginofthenucleus,theorganellethatisthesubjectofthisbook. Asisevidentinsubsequentchapters,wehaveextensiveknowledgeofits structureandactivities.Itisatrulybeautifulorganelle–onethatinducesin manyofusasenseofwonder.However,wearenotatallsurewhereitcame fromalthough,aswillbecomeclearlaterinthechapter,afewhypothesesare beginningtoemergeasfrontrunners.

Onthequesttosolvethepuzzle,onefactortoconsideristheoriginof eukaryotes.Itisnowacceptedthatthetwoothermajormembrane-bound organelles,mitochondriaandchloroplasts,haveevolvedfrombacterialsymbiontsthatinvadedorwereengulfedbywhatwecouldcallproto-eukaryotes (asoriginallyproposedbyMargulis,1971a,b,1981).Thisideahasbeen extensivelyconfirmedbygenomicandproteomicstudies,whichalsosuggeststronglythatthoseproto-eukaryotichostcellswerederivedfromthe Archaeaand,intermsofenergymetabolism,wereusingaformofglycolysis1 .Further,itisclearthatfollowingtheendosymbioticevents,transferof genesfromboththenon-photosynthetic(i.e.mitochondrial)andthephotosynthetic(chloroplastic)endosymbiontstothehost’sgenomeoccurredon alargescale.Indeed,thattheprocessisstillgoingon(Huang etal.,2004, Rousseau-Gueutin etal.,2011,Wang etal.,2012).Butwhere,andinwhatstate werethegenomesofthoseproto-eukaryotichostorganisms?

Itwasthoughtforseveralyearsthatrelevantinformationcouldbeobtained bystudyofamitochondrialeukaryotes,eukaryotespresumedtodatebackto beforethefirstendosymbioticevent.However,itisnowknownthattheseare secondarilyamitochondrial,asrevealedbythepresenceofendosymbiontderivedgenesinthenucleusandthevestigesofamitochondrion(e.g.van derGiezenandTozar,2005;Minge etal.,2009).So,thesecellscannottellus whattheproto-eukaryotelookedlike.Nevertheless,itisclearthatinmore recentinstancesofgenetransfer(asmentionedabove),theorganellegene hasbeenintegratedintoatypicaleukaryoticnucleargenomelocatedina typicaleukaryoticnucleus.Thesestructuresarenohindrancetogenetransfer. Further,theuseofbioinformaticscoupledwithcomparativecellphysiology andbiochemistryinattemptsto‘root’theeukaryoticphylogenetictreeall leadtotheconclusionthatmostoftheapproximately60differencesbetween eukaryotesandprokaryotesweredevelopedordevelopingbeforethefirst symbioticevent,theacquisitionofmitochondria(deDuve,2007;Margulis etal.,2007;Cavalier-Smith,2009).

Theeukaryoticfeaturespossessedbytheproto-eukaryotesarethoughtto haveincludedthepossessionofanucleus,nucleoskeletonandcytoskeleton (Margulis etal.,2007;deDuve,2007;Cavalier-Smith,2009).Lookingatthe

1 ButnotethatinmodernArchaeathereareseveralvariantsofthe‘conventional’ glycolysispathway(SatoandAtomi,2011).

firsttwoofthese,thesedatadonotprovideanyclearcluesaboutwhere thenucleuscamefromandtherearealsoquestionsaboutthenatureofthe nucleoskeletonintheearliesteukaryotes.Focussingspecificallyonthisproblem,wenotethatafterthefirstsymbioticevent(acquisitionofmitochondria), theeukaryoticlineagesplitintotwomajorbranches(Cavalier-Smith,2002), theunikonts(withoneflagellum)thatgaveriseto,amongstotherthings, fungiandMetazoa,andthebikonts(withtwoflagella),onelineageofwhich becameplantsbytheacquisitionofchloroplasts(asmentionedabove;see alsoKeeling,2010).

Turningnowtolookatextantlineages,asisshowninChapters2and4,part ofthenucleoskeletoninanimalsistheprominentlamina,consistingmainly ofproteinsknownaslamins.However,plantslacklaminsbutdopossessa lamina-likestructurethathasbeencalledthe‘plamina’(Fiserova etal.,2009), consistingofplant-specificproteinsthatarefunctionalanaloguesoflamins. Finally,infungi,atleastasrepresentedbyyeasts,thenucleoskeletondoes nothaveanyformoflamina.So,basedontheoriginsofthesegroups,itis suggestedthattheproto-eukaryoticnucleoskeletonlackedalaminaandthat thishasdevelopedsubsequenttotheuni-kont/bikontsplit.Thisgivesusa littlemoreinformationontheearlynucleus,butthequestionofitsorigin remains.

Atthispointfurtherspecificdiscussionoftheoriginofnucleusisdeferred totheendofthechapter,althoughitwillappearmoreindirectlyfromtimeto timeinthenextthreesections.Attentionisnowturnedtothegenomeitself. Particularfocuswillbeplacedonthegeneralstructureofthegenome,on itsreplicationandontheimplicationsforthelatterprocessofenclosingthe genomeinanorganelle.

1.2Nuclei–generalfeatures

Inplantcellsthatarenotextensivelyvacuolated,thenucleusisthelargestand usuallythemostobviousorganelle.Eveninmaturecellswithlargevacuoles, thenucleusisusuallyclearlyvisiblewithinthecytoplasm.Itistheorganelle thatcontainsthebulkofthecell’sDNA,thenucleargenome.Indeed,chromatin(Chapters5and6),consistingmainlyofacomplexofDNAandproteins,isusuallythemostobviouscomponentofthenucleus.Thechromatin isattached via scaffold-ormatrix-associatedregions(SARs/MARs)tothe nuclearmatrix/scaffold/nucleoskeleton(Chapters4to6).Withinchromatin, thehighlyrepeatedgenesencodingthemajorribosomalRNAs(rRNAs)are loopedoutinstructurescallednucleoli.Thefibrillarcentresofthenucleoli arethesitesoftranscriptionofthesegenesandthetranscriptsareprocessed intheouterregionsofthenucleoli.

ThenucleusisboundedbythenuclearenvelopeorNE(Chapters2and3), whichconsists,ineffect,ofthreemembranouscomponents(showndiagrammaticallyinthecartooninFigure1.1).Firstly,theouterenvelopeisconnected

Cytoplasm

Rough ER continuous with outer nuclear envelope

Figure1.1 Diagrammaticcartoonofthenuclearenvelopeandnuclearpore complex.(FromEvans etal.,2004.)ReproducedbypermissionoftheSocietyfor ExperimentalBiology.

totheERandthelipidsandproteinsoftheouterNEaresimilartothose oftheroughER.Further,aswiththeroughER,ribosomesareoftenpresent ontheouterNE.So,theouterNEmaybeasiteofproteinsynthesisandis certainlyapartofthecell’sendomembranesystem.Secondly,thereisthe innerNEseparatedfromtheouterNEbythelumen,whichisabout30nm across.TheinnersurfaceoftheinnerNEiscloselyassociatedwiththenuclear lamina,astructureconsistingoffilamentousproteinsandwhichformsthe maincomponentofthenuclearmatrixornucleo-skeleton.Thirdlythereis theporemembrane,whichlinkstheinnerandouterNEsandformspartof thenuclearporecomplexorNPC(Chapters2,4and8).

Thecontainmentofchromatinwithinitsownmembrane-boundorganelle hasmajorimplicationsforthelifeofthecell.Amongstotherthings,itpermitspreciseandcomplexregulationofgeneactivityandDNAreplication ‘protected’frommoregeneralaspectsofcellularmetabolism.However,it alsoimposesconstraints.Thenucleusdoesnotcontainprotein-synthesizing machinery,eventhoughproteinsmaybemadeonthesurfaceoftheouter NE.Alltheenzymes,togetherwithstructuralandregulatoryproteinsnecessaryfortheactivitiesandcomponentsofthenucleus,over1000proteinsin all(NuclearProteinDatabase:http://npd.hgu.mrc.ac.uk/),mustbeableto getinfromtheoutside.Atthesametime,severalthousandmoreproteins, thosethatarenotinvolvedinthelifeofthenucleus,arekeptout.Thereare alsoproteinsthatshuttlebetweenthenucleusandthecytosol.Finally,all thedifferentRNAsthatfunctioninthecytosolmustleavethenucleus(in theformofnucleoproteincomplexes).TheNPCshaveamajorroleinthe

controlofentryintoandexitfromthenucleus(Chapters4and8),alongwith specificsignallingandtransportmechanisms.Thisprovidesonemorelevel ofregulationofchromatin-associatedbiochemicalactivity.

1.3Theplantnucleargenome

1.3.1Generalfeatures

ArecentreviewbyHeslop-HarrisonandSchwarzacher(2011)givesawealth ofinformationaboutplantnucleargenomes,whileChapters5and6inthis volumedealwithspecificaspectsofchromatinorganization.Inthischapter, thefocusisonthosefeaturesrelatedtogenomeevolutionandreplication. Higherplantgenomesvaryenormouslyinoverallsize,rangingoverthree ordersofmagnitude.Thereissomecorrelationbetweengenomesizeand nuclearsizesothat,ingeneral,plantswithlargegenomeshavelargernuclei thanplantswithsmallgenomes.Someofthedifferencesingenomesizehave arisenbyduplicationofindividualgenesandofwholegenomes(polyploidy). Withinindividualgenomes,muchoftheDNAdoesnotcodeforproteins orRNA.Comparisonbetweencloselyrelatedspecies(see,e.g.Bryantand Hughes,2011)thathavedifferingamountsofnuclearDNAshowthatmost ofthevariationcanbeaccountedforbyrepeatedDNAsequences.Someof thevariationisinthenumberofcopiesofrepeatedgenes,suchasthose codingforrRNAbutmostofitisaccountedforbyvariationsinnon-coding DNA.Thisincludeshighlyrepeated‘satellite’DNAofaround180basepairs perrepeat(Sibson etal.,1991;Round etal.,1997),simplesequencerepeats andretrotransposons.‘Satellite’DNAsequencesareconcentratedatthecentromereswheretheyappeartobeessentialforcentromerefunction(Nagaki etal.,2003andChapter6,thisvolume).Retrotransposonsorretro-elements includeLINES(longinterspersedsequences)andvarioushighlyrepetitive sequencesofdifferentsizesandcopynumber.Takentogethertheseretroelementscanmakeaverylargeproportionofthegenome(fordetails,see BryantandHughes,2011;Heslop-HarrisonandSchwarzacher,2011).There arealso‘fossil’codingsequencesorpseudogenes,someofwhichseemto havebeenderivedfromotherspecies.Allthesetypesofsequencearepresent tosomeextentinalleukaryotesandhavepossiblybeenfeaturesofchromatinsincethefirstappearanceoftheEukarya.However,overtheperiodin whichhigherplantshavebeenevolving,theirnucleargenomeshavebeen andcontinuetobeamongstthemostdynamic.

Asinalleukaryotes,theDNAitselfexistsaslinearmolecules,onelong doublehelixperchromosome.Inthechromosomes,theDNAiscomplexed withproteins,mainlythebasicproteinsknownashistones,toformchromatin,asdescribedinmoredetailinChapters5and6.Somechromatin (heterochromatin)remainscondensedandthereforeclearlyvisiblethroughoutthecellcycle.AsdescribedinmuchmoredetailinChapter6,muchofthe

heterochromatinislocatedatthecentromeres(andthusinvolves‘satellite’ DNA,mentionedabove)andatthetelomeres(endsofchromosomes).Bycontrastwithheterochromatin,themajorityofthechromatin,knownaseuchromatin,decondensesasmitosisiscompleted.Thesignificanceofthesetwo patternsofbehaviourandofthedistributionheterochromatinisdiscussedin Chapter6.

ThelinearstructureofeukaryoticDNAmoleculeshascausedsometo questiontheoriginsofeukaryoticgenomes(seeSection1.5).Theconsensus remainsthattheoriginalproto-eukaryotichostcellwasderivedfromthe archaeanlineageandyetamongstextantmembersoftheArchaea,wedo notyetknowofanythathavelinearchromosomes.Nevertheless,DNAin manyArchaeaiscomplexedwithhistone-likeproteinstoformfeaturesthat resemblethenucleosomesofeukaryoticchromatin(PereiraandReeve,1998; Sandman etal.,2001),albeitthatthesenucleosomescontainonly80basepairs ofDNAwrappedroundfour,noteighthistonemolecules(seeChapter5fora detaileddescriptionofeukaryoticchromatin)2 .Further,severaleubacteriaare knownthathavelinearchromosomes,andsomespeciesareabletomaintain bothlinearandcircularDNAmolecules(VolffandAltenbuchner,2000;Lin andMoret,2011),asituationthathasalsobeendescribedformitochondria insomelowerandhigherplantsandfungi(Borza etal.,2009;Lo etal.,2011). TheabsenceoflinearDNAmoleculesdoesnotthereforeruleoutArchaeaas beingprogenitorsoforasistergrouptotheproto-eukaryotes.

1.3.2Replicationofthenucleargenome

ThegeneralfeaturesofeukaryoticgenomesraiseseveralproblemsforDNA replication.Thesehavebeendiscussedmorefullyinanearlierpublication (Bryant,2010)butneedtobementionedbrieflyhere.Thefirstisthatthe complexofDNAandproteininchromatin(whichisofcoursecommonto alleukaryotes)meansthatcopyingtheDNAisslowerthaninprokaryotes. TakingthistogetherwiththelengthofeukaryoticDNAmolecules,especially insomeplantgenomes,hasledtotheevolutionofmultiplereplicationorigins (pointsatwhichreplicationmaystart)alongtheaxisofeachDNAmolecule. ThenatureofthesereplicationoriginsinrelationtoDNAstructurehasbeen amatterfordebateformanyyears(seee.g.Hern ´ andez etal.,1988;Van’t HofandLamm,1992;BryantandFrancis,2008;Bryant,2010;Lee etal.,2010; seealsoBerbenetz etal.,2010)anditisstillnotclearwhetherornotspecific sequencesareinvolved.Whatisclear,however,isthatoriginsareAT-richand arethereforemorepronetotransient,localizedshort-rangestrandseparation

2 Itmustalsobenotedthatmany,ifnotall,ArchaeapossessadifferenttypeofDNAbindingprotein,knownasAlba,whichisalsoabletogenerateaformofchromatinin whichtheDNAisinsidetheprotein(Tanaka etal.,2012)–i.e.verydifferentfromthe nucleosomestructure.

knownas‘breathing’.Itisalsoclearthatthetimingandorderinwhichthe originsareactiveensuresthattheDNAisreplicatedwithinanS-phasethat iscompletedwithinafewhours.ThereareagainlinkswiththeArchaeain thatseveralspecieshavemorethanonereplicationorigin(usuallytwoor three:LundgrenandBernander,2005;RobinsonandBell,2005),whichseem tobeattachedtospecificlocationsatthecell’speriphery(Gristwood etal., 2012).Likethereplicationoriginsofplants(andothereukaryotes),archaean originsareAT-richand,inthisgroup,specificsequenceisimportantfor correctfunction(MajernikandChong,2008).

Finally,theuni-directional(5 to3 )natureofDNAreplication,coupledwith theinabilityofDNApolymerasestoinitiatereplicationwithoutaprimer(see Bryant,2010)causesproblemsattheendsofmolecules.Thishasledtothe developmentduringevolutionofspecializedstructurescalledtelomeresat theendsofchromosomalDNAmolecules,withanassociatedenzyme,telomerase3 .AsdiscussedinChapter7,theendsareprotectedfromdegradation andfrombeinginappropriatelytargetedbytheDNArepairmachinery(see Chapter5)becauseofthetelomere/telomerasecombination.

Theenzymesandotherproteinswhichcarryoutreplicationofnuclear DNAinplantshavebeendescribedinsomedetailintworecentpapers (Schultz etal.,2007;Bryant,2010).Herethefocusisonaselectionofthose aspectsthatprovidecluesaboutevolution.Lookingfirstatpre-replication events(seee.g.Aves,2009;BryantandAves,2011),itisclearthatinplants,as inothereukaryotes,replicationoriginsareboundandtherefore‘marked’by acomplexofsixproteins,theOrigin-RecognitionComplex(ORC)(Collinge, etal.,2004;Mori etal.,2005;Shultz etal.,2007;Bryant2010).Aproteinknown asCDC6,alongwithCDT1,thenfacilitatestheloadingoftheCMGcomplexconsistingoftheGINShetero-tetramer,MCMs2-7(thehelicasethat separatesthetwostrandsofDNAatthereplicationfork)andtheprotein knownasCDC45,whichwilllaterfacilitateloadingoftheinitiatingDNA polymerase.LookingattheArchaea,itisclearthatbothrecognitionofreplicationoriginsandthefirststageintheiractivationarecarriedoutbya singleproteinthatisbothsimilartoandfulfilsthefunctionsoftheORC andCDC6(reviewedbyBryantandAves,2011).ThefunctionoftheGINS complexiscarriedouteitherbyahomo-tetramerortetramerconsistingof twodifferenthomo-dimers(Yoshimochi etal.,2008).Sequencesimilarityto eukaryoticGINSproteinsislimitedbuttheproteinsinteracttoformacomplexofsimilararchitecturetotheeukaryoticcomplex.WithrespecttoMCMs, mostArchaeahavejustone,whichformsahomohexamerascomparedwith theeukaryoticheterohexamer.HintsofmultipleMCMsareseenin Thermococcuskodakarensis (Pan etal.,2011),whichhasthree.BothMCMs2and3 canformhomohexamersbutonlyMCM3isessentialforDNAreplication.

3 SeealsothediscussiononlinearDNAmoleculesinmitochondria(e.g.Valach etal., 2011).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.