Initial Rotor Position Detection for Brushless DC Motors Based on Coupling Injection of High-Frequen

Page 1

ELECTRICAL PROJECTS USING MATLAB/SIMULINK Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in

0-9347143789/9949240245

Initial Rotor Position Detection for Brushless DC Motors Based on Coupling Injection of High-Frequency Signal ABSTRACT: In applications where motor inversion is forbidden, it is important to detect the initial rotor position of the motor. For this reason, based on coupling injection of high-frequency signal, a novel method of initial rotor position detection for brushless DC motors (BLDCM) is proposed in this paper. Firstly, the proposed method detects the relationship between three-phase winding inductances by injecting the high frequency detection signal into motor windings in a coupling way, and the initial rotor position is determined into two sectors with 180 degrees electric angle difference. Then, the polarity of the permanent magnet rotor is determined by applying two opposite voltage vectors to motor windings, so that the initial rotor position is determined into a unique sector, and the positioning accuracy is 30 degrees electric angle. The proposed method significantly reduces the amplitude of the detection signal while increases its frequency by the way of coupling injection, thus reducing the response current and electromagnetic torque generated by the high-frequency signal and reducing the possibility of rotor inversion. Finally, the effectiveness of the proposed method is verified by experimental results.

KEYWORDS: 1. Brushless DC motor 2. Initial rotor position 3. High-frequency signal 4. Coupling injection

SOFTWARE:MATLAB/SIMULINK

For Simulation Results of the project Contact Us

Gmail:asokatechnologies@gmail.com, Website: http://www.asokatechnologies.in

0-9347143789/9949240245


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.