Quantum optics an introduction 1st edition mark fox download pdf

Page 1


OpticsAnIntroduction1stEdition MarkFox

https://ebookgate.com/product/quantum-optics-anintroduction-1st-edition-mark-fox/

Download more ebook from https://ebookgate.com

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Quantum Optics An Introduction Oxford Master Series in Physics Mark Fox

https://ebookgate.com/product/quantum-optics-an-introductionoxford-master-series-in-physics-mark-fox/

An Introduction to Quantum Optics Photon and Biphoton Physics Shih

https://ebookgate.com/product/an-introduction-to-quantum-opticsphoton-and-biphoton-physics-shih/

Quantum optics Raymond Chiao

https://ebookgate.com/product/quantum-optics-raymond-chiao/

Theoretical optics an introduction 1st Edition Hartmann Römer

https://ebookgate.com/product/theoretical-optics-anintroduction-1st-edition-hartmann-romer/

An introduction to quantum computing 1st Edition

Phillip Kaye

https://ebookgate.com/product/an-introduction-to-quantumcomputing-1st-edition-phillip-kaye/

Supersymmetric quantum mechanics an introduction Second Edition Gangopadhyaya

https://ebookgate.com/product/supersymmetric-quantum-mechanicsan-introduction-second-edition-gangopadhyaya/

Charged Particle Optics Theory An Introduction 1st Edition Timothy R. Groves

https://ebookgate.com/product/charged-particle-optics-theory-anintroduction-1st-edition-timothy-r-groves/

Optics and photonics an introduction 2nd Edition F. Graham Smith

https://ebookgate.com/product/optics-and-photonics-anintroduction-2nd-edition-f-graham-smith/

Quantum optics with semiconductor nanostructures 1st Edition Frank Jahnke

https://ebookgate.com/product/quantum-optics-with-semiconductornanostructures-1st-edition-frank-jahnke/

OXFORDMASTERSERIESINPHYSICS

OXFORDMASTERSERIESINPHYSICS

TheOxfordMasterSeriesisdesignedforfinalyearundergraduateandbeginninggraduatestudentsinphysics andrelateddisciplines.Ithasbeendrivenbyaperceivedgapintheliteraturetoday.Whilebasicundergraduate physicstextsoftenshowlittleornoconnectionwiththehugeexplosionofresearchoverthelasttwodecades, moreadvancedandspecializedtextstendtoberatherdauntingforstudents.Inthisseries,alltopicsandtheir consequencesaretreatedatasimplelevel,whilepointerstorecentdevelopmentsareprovidedatvariousstages. Theemphasisisonclearphysicalprincipleslikesymmetry,quantummechanics,andelectromagnetismwhich underliethewholeofphysics.Atthesametime,thesubjectsarerelatedtorealmeasurementsandtothe experimentaltechniquesanddevicescurrentlyusedbyphysicistsinacademeandindustry.Booksinthisseries arewrittenascoursebooks,andincludeampletutorialmaterial,examples,illustrations,revisionpoints,and problemsets.Theycanlikewisebeusedaspreparationforstudentsstartingadoctorateinphysicsandrelated fields,orforrecentgraduatesstartingresearchinoneofthesefieldsinindustry.

CONDENSEDMATTERPHYSICS

1.M.T.Dove: Structureanddynamics:anatomicviewofmaterials

2.J.Singleton: Baudtheoryandelectronicpropertiesofsolids

3.A.M.Fox: Opticalpropertiesofsolids

4.S.J.Blundell: Magnetismincondensedmatter

5.J.F.Annett: Superconductivity

6.R.A.L.Jones: Softcondensedmatter

ATOMIC,OPTICAL,ANDLASERPHYSICS

7.C.J.Foot: AtomicPhysics

8.G.A.Brooker: Modernclassicaloptics

9.S.M.Hooker,C.E.Webb: Laserphysics

15.A.M.Fox: Quantumoptics:anintroduction

PARTICLEPHYSICS,ASTROPHYSICS,ANDCOSMOLOGY

10.D.H.Perkins: Particleastrophysics

11.Ta-PeiCheng: Relativity,gravitation,andcosmology

STATISTICAL,COMPUTATIONAL,ANDTHEORETICALPHYSICS

12.M.Maggiore: Amodernintroductiontoquantumfieldtheory

13.W.Krauth: Statisticalmechanics:algorithmsandcomputations

14.J.P.Sethna: Entropy,orderparameters,andcomplexity

QuantumOptics

AnIntroduction

MARKFOX

DepartmentofPhysicsandAstronomy

UniversityofSheffield

GreatClarendonStreet,OxfordOX26DP

OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwidein

OxfordNewYork

AucklandCapeTownDaresSalaamHongKongKarachi KualaLumpurMadridMelbourneMexicoCityNairobi NewDelhiShanghaiTaipeiToronto Withofficesin

ArgentinaAustriaBrazilChileCzechRepublicFranceGreece GuatemalaHungaryItalyJapanPolandPortugalSingapore SouthKoreaSwitzerlandThailandTurkeyUkraineVietnam OxfordisaregisteredtrademarkofOxfordUniversityPress intheUKandincertainothercountries

PublishedintheUnitedStates byOxfordUniversityPressInc.,NewYork

c OxfordUniversityPress2006

Themoralrightsoftheauthorhavebeenasserted DatabaserightOxfordUniversityPress(maker)

Firstpublished2006

Allrightsreserved.Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, withoutthepriorpermissioninwritingofOxfordUniversityPress, orasexpresslypermittedbylaw,orundertermsagreedwiththeappropriate reprographicsrightsorganization.Enquiriesconcerningreproduction outsidethescopeoftheaboveshouldbesenttotheRightsDepartment, OxfordUniversityPress,attheaddressabove

Youmustnotcirculatethisbookinanyotherbindingorcover andyoumustimposethesameconditiononanyacquirer BritishLibraryCataloguinginPublicationData Dataavailable

LibraryofCongressCataloginginPublicationData Fox,Mark(AnthonyMark) Quantumoptics:anintroduction/MarkFox. p.cm.—(Oxfordmasterseriesinphysics;6) Includesbibliographicalreferencesandindex.

ISBN-13:978–0–19–856672–4(hbk.:acid-freepaper)

ISBN-10:0–19–856672–7(hbk.:acid-freepaper)

ISBN-13:978–0–19–856673–1(pbk.:acid-freepaper)

ISBN-10:0–19–856673–5(pbk.:acid-freepaper) 1.Quantumoptics.I.Title.II.Series. QC446.2.F692006 535 .15—dc222005025707

TypesetbyNewgenImagingSystems(P)Ltd.,Chennai,India PrintedinGreatBritain onacid-freepaperby AntonyRowe,Chippenham

ISBN0–19–856672–7978–0–19–856672–4

ISBN0–19–856673–5(Pbk.)978–0–19–856673–1(Pbk.) 10987654321

Preface

Quantumopticsisasubjectthathascometotheforeoverthelast10–20 years.Formerly,itwasregardedasahighlyspecializeddiscipline,accessibleonlytoasmallnumberofadvancedstudentsatselecteduniversities. Nowadays,however,thedemandforthesubjectismuchbroader,with theintereststronglyfuelledbytheprospectofusingquantumopticsin quantuminformationprocessingapplications.

Myowninterestinquantumopticsgoesbackto1987,whenIattended theConferenceonLasersandElectro-Optics(CLEO)forthefirst time.Theground-breakingexperimentsonsqueezedlighthadrecently beencompleted,andIwasabletohearinvitedtalksfromtheleadingresearchersworkinginthefield.Attheendoftheconference,I foundmyselfsufficientlyinterestedinthesubjectthatIboughtacopy ofLoudon’s Quantumtheoryoflight andstartedtoworkthroughitin afairlysystematicway.Nearly20yearson,IstillconsiderLoudon’s bookasmyfavouriteonthesubject,althoughtherearenowmanymore availabletochoosefrom.Sowhywriteanother?

TheanswertothisquestionbecameclearertomewhenItriedto developacourseonquantumopticsasasubmoduleofalargerunit entitled‘AspectsofModernPhysics’.Thiscourseistakenbyundergraduatestudentsintheirfinalsemester,andaimstointroducethemto anumberofcurrentresearchtopics.Isetaboutdesigningacourseto coverafewbasicideasaboutphotonstatistics,quantumcryptography, andBose–Einsteincondensation,hopingthatIwouldfindasuitabletext torecommend.However,aquickinspectionofthequantumopticstexts thatwereavailableledmetoconcludethattheyweregenerallypitched atahigherlevelthanmytargetaudience.Furthermore,themajority wererathermathematicalintheirpresentation.Ithereforereluctantly concludedthatIwouldhavetowritethebookIwasseekingmyself.The endresultiswhatyouseebeforeyou.Myhopeisthatitwillserveboth asausefulbasicintroductiontothesubject,andalsoasatasty hors d’oeuvre forthemoreadvancedtextslikeLoudon’s.

Indevelopingmycoursenotesintoafull-lengthbook,thefirstproblemthatIencounteredwastheselectionoftopics.Traditionalquantum opticsbookslikeLoudon’sassumethatthesubjectrefersprimarilyto thepropertiesoflightitself.Atthesametime,itisapparentthatthe subjecthasbroadenedconsiderablyinitsscope,atleasttomanypeople workinginthefield.Ihavethereforeincludedabroadrangeoftopics thatprobablywouldnothavefoundtheirwayintoaquantumoptics text20yearsago.Itisprobablethatsomeoneelsewritingasimilartext

wouldmakeadifferentselectionoftopics.Myselectionhasbeenbased mainlyonmyperceptionofthekeysubjectareas,butitalsoreflectsmy ownresearchintereststosomeextent.Forthisreason,thereareprobablymoreexamplesofquantumopticaleffectsinsolidstatesystemsthan mightnormallyhavebeenexpected.

SomeofthesubjectsthatIhaveselectedforinclusionarestilldevelopingveryrapidlyatthetimeofwriting.Thisisespeciallytrueofthetopics inquantuminformationtechnologycoveredinPartIV.Anyattemptto giveadetailedoverviewofthepresentstatusoftheexperimentsinthese fieldswouldberelativelypointless,asitwoulddateveryquickly.Ihave thereforeadoptedthestrategyoftryingtoexplainthebasicprinciples andthenillustratingthemwithafewrecentresults.Itismyhopethat thechaptersIhavewrittenwillbesufficienttoallowstudentswhoare newtothesubjectstounderstandthefundamentalconcepts,thereby allowingthemtogototheresearchliteratureshouldtheywishtopursue anytopicsinmoredetail.

AtonestageIthoughtaboutincludingreferencestoagoodnumberof internetsiteswithinthe‘FurtherReading’sections,butasthelinksto thesesitesfrequentlychange,Ihaveactuallyonlyincludedafew.Iam surethatthemoderncomputer-literatestudentwillbeabletofindthese sitesfarmoreeasilythanIcan,andIleavethispartofthetasktothe student’sinitiative.Itisafortunatecoincidencethatthebookisgoing topressin2005,thecentenaryofEinstein’sworkonthephotoelectric effect,whentherearemanyarticlesavailabletoarousetheinterestof studentsonthissubject.Furthermore,theawardofthe2005Nobel PrizeforPhysicstoRoyGlauber“forhiscontributiontothequantum theoryofopticalcoherence”hasgeneratedmanymorewidely-accessible informationresources.

Anissuethataroseafterreceivingreviewsofmyoriginalbookplan wasthedifficultyinmakingthesubjectaccessiblewithoutgrossoversimplificationoftheessentialphysics.Asaconsequenceofthesereviews, Isuspectthatsomesectionsofthebookarepitchedataslightlyhigher levelthanmyoriginaltargetofafinal-yearundergraduate,andwould infactbemoresuitableforuseinthefirstyearofaMaster’scourse. Despitethis,Ihavestilltriedtokeepthemathematicstoaminimumas faraspossible,andconcentratedonexplanationsbasedonthephysical understandingoftheexperimentsthathavebeenperformed.

Iwouldliketothankanumberofpeoplewhohavehelpedinthevariousstagesofthepreparationofthisbook.First,Iwouldliketothank alloftheanonymousreviewerswhomademanyhelpfulsuggestionsand pointedoutnumerouserrorsintheearlyversionsofthemanuscript. Second,Iwouldliketothankseveralpeopleforcriticalreadingof partsofthemanuscript,especiallyDrBrendonLovettforChapter13, andDrGeraldBullerandRobertCollinsforChapter12.Iwouldlike tothankDrEdDawforclarifyingmyunderstandingofgravity wave interferometers.AspecialwordofthanksgoestoDrGeoffBrookerfor criticalreadingofthewholemanuscript.Third,Iwouldliketothank SonkeAdlungatOxfordUniversityPressforhissupportandpatience

throughouttheprojectandAnitaPetrieforoverseeingtheproduction ofthebook.IamalsogratefultoDrMarkHopkinsonfortheTEMpictureinFig.D.3,andtoDrRobertTaylorforFig.4.7.Finally,Iwould liketothankmydoctoralsupervisor,Prof.JohnRyan,fororiginally pointingmetowardsquantumoptics,andmynumerouscolleagueswho havehelpedmetocarryoutanumberofquantumopticsexperiments duringmycareer.

Sheffield June2005

This page intentionally left blank

Contents

Listofsymbols xv

Listofabbreviations xviii

IIntroductionandbackground 1

1Introduction 3

1.1Whatisquantumoptics?3

1.2Abriefhistoryofquantumoptics4

1.3Howtousethisbook6

2Classicaloptics 8

2.1Maxwell’sequationsandelectromagnetic waves8

2.1.1Electromagneticfields8

2.1.2Maxwell’sequations10

2.1.3Electromagnetic waves10

2.1.4Polarization12

2.2Diffractionandinterference13

2.2.1Diffraction13

2.2.2Interference15

2.3Coherence16

2.4Nonlinearoptics19

2.4.1Thenonlinearsusceptibility19

2.4.2Second-ordernonlinearphenomena20

2.4.3Phasematching23

3Quantummechanics 26

3.1Formalismofquantummechanics26

3.1.1TheSchr¨odingerequation26

3.1.2Propertiesof wave functions28

3.1.3Measurementsandexpectationvalues30

3.1.4Commutatorsandtheuncertaintyprinciple31

3.1.5Angularmomentum32

3.1.6Diracnotation34

3.2Quantizedstatesinatoms35

3.2.1Thegrossstructure35

3.2.2Fineandhyperfinestructure39

3.2.3TheZeemaneffect41

3.3Theharmonicoscillator41

3.4TheStern–Gerlachexperiment43

3.5Thebandtheoryofsolids45

4Radiativetransitionsinatoms 48

4.1Einsteincoefficients48

4.2Radiativetransitionrates51

4.3Selectionrules54

4.4Thewidthandshapeofspectrallines56

4.4.1Thespectrallineshapefunction56

4.4.2Lifetimebroadening56

4.4.3Collisional(pressure)broadening57

4.4.4Dopplerbroadening58

4.5Linebroadeninginsolids58

4.6Opticalpropertiesofsemiconductors59

5Photonstatistics 75

5.1Introduction75

5.2Photon-countingstatistics76

5.3Coherentlight:Poissonianphotonstatistics78

5.4Classificationoflightbyphotonstatistics82

5.5Super-Poissonianlight83

5.5.1Thermallight83

5.5.2Chaotic(partiallycoherent)light86

5.6Sub-Poissonianlight87

5.7Degradationofphotonstatisticsbylosses88

5.8Theoryofphotodetection89

5.8.1Semi-classicaltheoryofphotodetection90

5.8.2Quantumtheoryofphotodetection93

5.9Shotnoiseinphotodiodes94

5.10Observationofsub-Poissonianphotonstatistics99

5.10.1Sub-Poissoniancountingstatistics99

5.10.2Sub-shot-noisephotocurrent101

6Photonantibunching

6.1Introduction:theintensityinterferometer105

6.2HanburyBrown–Twissexperimentsand classicalintensityfluctuations108

6.3Thesecond-ordercorrelationfunction g (2) (τ )111

6.4HanburyBrown–Twissexperimentswithphotons113

6.5Photonbunchingandantibunching115

6.5.1Coherentlight116

6.5.2Bunchedlight116

6.5.3Antibunchedlight117

6.6Experimentaldemonstrationsofphotonantibunching117

6.7Single-photonsources120

7Coherentstatesandsqueezedlight

126

7.1Light wavesas classicalharmonicoscillators126

7.2Phasordiagramsandfieldquadratures129

7.3Lightasaquantumharmonicoscillator131

7.4Thevacuumfield132

7.5Coherentstates134

7.6Shotnoiseandnumber–phaseuncertainty135

7.7Squeezedstates138

7.8Detectionofsqueezedlight139

7.8.1Detectionofquadrature-squeezed vacuumstates139

7.8.2Detectionofamplitude-squeezedlight142

7.9Generationofsqueezedstates142

7.9.1Squeezedvacuumstates142

7.9.2Amplitude-squeezedlight144

7.10Quantumnoiseinamplifiers146

8Photonnumberstates

151

8.1Operatorsolutionoftheharmonicoscillator151

8.2Thenumberstaterepresentation154

8.3Photonnumberstates156

8.4Coherentstates157

8.5QuantumtheoryofHanburyBrown–Twiss experiments160

IIIAtom–photoninteractions

9Resonantlight–atominteractions 167

9.1Introduction167

9.2Preliminaryconcepts168

9.2.1Thetwo-levelatomapproximation168

9.2.2Coherentsuperpositionstates169

9.2.3Thedensitymatrix171

9.3Thetime-dependentSchr¨odingerequation172

9.4Theweak-fieldlimit:Einstein’s B coefficient174

9.5Thestrong-fieldlimit:Rabioscillations177

9.5.1Basicconcepts177

9.5.2Damping180

9.5.3Experimentalobservationsof Rabioscillations182

9.6TheBlochsphere187

10Atomsincavities 194

10.1Opticalcavities194

10.2Atom–cavitycoupling197

10.3Weakcoupling200

10.3.1Preliminaryconsiderations200

10.3.2Free-spacespontaneousemission201

10.3.3Spontaneousemissioninasingle-mode cavity:thePurcelleffect202

10.3.4Experimentaldemonstrationsof thePurcelleffect204 10.4Strongcoupling206

10.4.1Cavityquantumelectrodynamics206

10.4.2Experimentalobservationsofstrongcoupling209

10.5Applicationsofcavityeffects211

11.2Lasercooling218

11.2.1BasicprinciplesofDopplercooling218

11.2.2Opticalmolasses221

11.2.3Sub-Dopplercooling224

11.2.4Magneto-opticatomtraps226

11.2.5Experimentaltechniquesforlasercooling227

11.2.6Coolingandtrappingofions229

11.3Bose–Einsteincondensation230

11.3.1Bose–Einsteincondensationasaphase transition230

11.3.2MicroscopicdescriptionofBose–Einstein condensation232

11.3.3ExperimentaltechniquesforBose–Einstein condensation233 11.4Atomlasers236

12.1Classicalcryptography243

12.2Basicprinciplesofquantumcryptography245

12.3Quantumkeydistributionaccordingto theBB84protocol249

12.4Systemerrorsandidentityverification253

12.4.1Errorcorrection253

12.4.2Identityverification254

12.5Single-photonsources255

12.6Practicaldemonstrationsofquantumcryptography256

12.6.1Free-spacequantumcryptography257

12.6.2Quantumcryptographyinopticalfibres258

13.1Introduction264

13.2Quantumbits(qubits)267

13.2.1Theconceptofqubits267

13.2.2Blochvectorrepresentationofsinglequbits269

13.2.3Columnvectorrepresentationofqubits270

13.3Quantumlogicgatesandcircuits270

13.3.1Preliminaryconcepts270

13.3.2Single-qubitgates272

13.3.3Two-qubitgates274

13.3.4Practicalimplementationsofqubitoperations275

13.4Decoherenceanderrorcorrection279

13.5Applicationsofquantumcomputers281

13.5.1Deutsch’salgorithm281

13.5.2Grover’salgorithm283

13.5.3Shor’salgorithm286

13.5.4Simulationofquantumsystems287

13.5.5Quantumrepeaters287

13.6Experimentalimplementationsofquantum computation288

13.7Outlook292

14Entangledstatesandquantumteleportation 296

14.1Entangledstates296

14.2Generationofentangledphotonpairs298

14.3Single-photoninterferenceexperiments301

14.4Bell’stheorem304

14.4.1Introduction304

14.4.2Bell’sinequality305

14.4.3ExperimentalconfirmationofBell’stheorem308 14.5Principlesofteleportation310

14.6Experimentaldemonstrationofteleportation313 14.7Discussion316

Appendices

APoissonstatistics

BParametricamplification

B.1Wavepropagationinanonlinearmedium324

B.2Degenerateparametricamplification326

CThedensityofstates

DLow-dimensionalsemiconductorstructures

D.1Quantumconfinement333

D.2Quantumwells335

D.3Quantumdots337

ENuclearmagneticresonance

E.1Basicprinciples339

E.2Therotatingframetransformation341

E.3TheBlochequations344

Listofsymbols

Thealphabetonlycontains26letters,andtheuseofthesamesymboltorepresentdifferentquantitiesis unavoidableinabookofthislength.Wheneverthisoccurs,itshouldbeobviousfromthecontextwhich meaningisintended.

ˆ a annihilationoperator

ˆ a† creationoperator

a lengthparameter

a unitvector

a0 Bohrradius

A area

Aij Einstein A coefficient

b unitvector

B magneticfield(fluxdensity)

Bij Einstein B coefficient

B magneticfieldgradient

ci amplitudecoefficient

C capacitance

CV heatcapacityatconstantvolume

d distance;slitwidth

dij nonlinearopticalcoefficienttensor

D diameter

D electricdisplacement

Dp momentumdiffusioncoefficient

E energy

Eg band-gapenergy

EX excitonbindingenergy

E electricfield

E 0 electricfieldamplitude

f frequency

f (T )fractionofcondensedparticles

fij oscillatorstrength

F force;totalangularmomentum

F finesse

FFano Fanofactor

FP Purcellfactor

g degeneracy;nonlinearcoupling

g (E )densityofstatesatenergy E

g (k )statedensityin k -space

g (ω )densityofstatesatangularfrequency ω

gν (ν )spectrallineshapefunction

gω (ω )spectrallineshapefunction

gF hyperfine g -factor

gJ Land´ e g -factor

gN nuclear g -factor

gs electronspin g -factor

g0 atom–cavitycouplingconstant

g (1) (τ )first-ordercorrelationfunction

g (2) (τ )second-ordercorrelationfunction

G gain;Groveroperator

h strain

H magneticfield

ˆ H Hamiltonian

H Hadamardoperator

H perturbation

Hn (x)Hermitepolynomial

ˆ i unitvectoralongthe x-axis

i electricalcurrent

I opticalintensity;nuclearspin

Irot momentofinertia

Is saturationintensity

I nuclearangularmomentum

I identitymatrix

Iz z -componentofnuclearangularmomentum

j currentdensity;angularmomentum(single electron)

ˆ j unitvectoralongthe y -axis

J angularmomentum

k wavevector

k modulusof wavevector;springconstant

ˆ k unitvectoralongthe z -axis

l orbitalangularmomentum(singleelectron)

lz z -componentoforbitalangularmomentum (singleelectron)

L length;meanfreepath

L orbitalangularmomentum

Lc coherencelength

Lw quantumwellthickness

m mass

m0 electronrestmass

m∗ effectivemass

m∗ e electroneffectivemass

mH massofhydrogenatom

M matrix

M magnetization

Mx x-componentofthemagnetization

My y -componentofthemagnetization

Mz z -componentofthemagnetization

n refractiveindex;photonnumber;number ofevents

n2 nonlinearrefractiveindex

no refractiveindexforordinaryray

ne refractiveindexforextraordinaryray

n meanphotonnumber

n(E )thermaloccupancyoflevelatenergy E

nBE (E )Bose–Einsteindistributionfunction

nFD (E )Fermi–Diracdistributionfunction

N numberofatoms,particles,photons, counts,timeintervals,databits

Nstop stoppingnumberofabsorption–emission cycles

ˆ O operator

p momentum;probability

p electricdipolemoment

ˆ p momentumoperator

P pressure;power

P probability

Pij probabilityfor i → j transition

P electricpolarization

q charge;generalizedpositioncoordinate; qubit

Q qualityfactor

r radius;amplitudereflectioncoefficient

r positionvector

ˆ r positionoperator

R reflectivity;netabsorptionrate;electrical resistance

R pumpingrate;countrate

Ri (θ )rotationoperatoraboutCartesianaxis i

s squeezeparameter;saturationparameter

s spinangularmomentum(singleelectron)

sz z -componentofspinangularmomentum (singleelectron)

S Clauser,Horne,Shimony,andHolt parameter

S spinangularmomentum

t time;amplitudetransmissioncoefficient

te expansiontime

T temperature;timeinterval

ˆ T kineticenergyoperator

T timeinterval;transmission

Tc criticaltemperature

Top gateoperationtime

Tosc oscillationperiod

Tp pulseduration

T1 longitudinal(spin–lattice)relaxationtime

T2 transverse(spin–spin)relaxationtime; dephasingtime

u initialvelocity

u(ν )spectralenergydensityatfrequency ν

u(ω )spectralenergydensityatangular frequency ω

U energydensity

ˆ

U unitaryoperator

v velocity

V volume;potentialenergy

ˆ

V perturbation;potentialenergyoperator

Vij perturbationmatrixelement

w Gaussianbeamradius

W countrateintimeinterval T

Wij transitionrate

x positioncoordinate

ˆ x unitvectoralongthe x-axis

ˆ x positioncoordinateoperator

X Xoperator

X1,2 quadraturefield

y positioncoordinate

ˆ y unitvectoralongthe y -axis

Yl,ml sphericalharmonicfunction

z positioncoordinate

ˆ z unitvectoralongthe z -axis

Z atomicnumber;Zoperator;partition function;impedance

α coherentstatecomplexamplitude; dampingcoefficient

β spontaneousemissioncouplingfactor

γ gyromagneticratio;dampingrate;decay rate;linewidth;gaincoefficient

Γ torque

δ frequencydetuning

δ (x)Diracdeltafunction

δij Kroneckerdeltafunction

∆detuninginangularfrequencyunits

ε errorprobability

r relativepermittivity

θ angle;polarangle

Θrotationangle;pulsearea

η quantumefficiency

κ photondecayrate

λ wavelength

λdeB deBroglie wavelength

µ reducedmass;chemicalpotential;mean value

µ magneticdipolemoment

µij dipolemomentfor i → j transition

µR relativemagneticpermeability

ν frequency

νL laserfrequency

νvib vibrationalfrequency

ξ dipoleorientationfactor;opticalloss; emissionprobabilityperunittimeper unitintensity

ρ densitymatrix

ρij elementofdensitymatrix

ρ energydensityofblack-bodyradiation chargedensity

σ standarddeviation;electricalconductivity

σs scatteringcross-section

Listofquantumnumbers

τ lifetime

τc coherencetime

τcollision timebetweencollisions

τD detectorresponsetime

τG gravitywavep eriod

τR radiativelifetime

τNR non-radiativelifetime

φ opticalphase

ϕ wave function;opticalphase;azimuthal angle

χ electricsusceptibility;spin wave function

χ(n) nth-ordernonlinearsusceptibility

χ(2) ijk second-ordernonlinearsusceptibility tensor

χM magneticsusceptibility

Φphotonflux; wave function

Ψwave function

ψ wave function

ω angularfrequency

ωL Larmorprecessionangularfrequency

Ωsolidangle;angularfrequency

Ω angularvelocityvector

ΩR Rabiangularfrequency

Inatomicphysics,loweranduppercaselettersrefertoindividualelectronsorwholeatomsrespectively.

F totalangularmomentum(withnuclear spinincluded)

I nuclearspin

j , J totalelectronangularmomentum

l , L orbitalangularmomentum

MF magnetic(z -componentoftotalangular momentumincludinghyperfine interactions)

MI magnetic(z -componentofnuclearspin)

mj , MJ magnetic(z -componentoftotalangular momentum)

ml , ML magnetic(z -componentoforbitalangular momentum)

ms , MS magnetic(z -componentofspinangular momentum)

n principal

s, S spin

Listofabbreviations

ACalternatingcurrent

AOSacousto-opticswitch

APDavalanchephotodiode

B92Bennett1992

BB84Bennett–Brassard1984

BBO β-bariumborate

BSbeamsplitter

BSMBell-statemeasurement

CHSHClauser–Horne–Shimony–Holt

CWcontinuous wave

DBRdistributedBraggreflector

DCdirectcurrent

EPREinstein–Podolsky–Rosen

EPRBEinstein–Podolsky–Rosen–Bohm

FWHMfullwidthathalfmaximum

HBTHanburyBrown–Twiss

LDlaserdiode

LEDlight-emittingdiode

LHVlocalhiddenvariables

LIGOlightinterferometergravitational wave observatory

LISAlaserinterferometerspaceantenna

LOlocaloscillator

MBEmolecularbeamepitaxy

MOCVDmetalorganicchemicalvapourepitaxy

NMRnuclearmagneticresonance

PBSpolarizingbeamsplitter

PCPockelscell

PDphotodiode

PMTphotomultipliertube

QEDquantumelectrodynamics

RFradiofrequency

rmsrootmeansquare

SNLshot-noiselevel

SNRsignal-to-noiseratio

SPADsingle-photonavalanchephotodiode

STPstandardtemperatureandpressure

TEMtransmissionelectronmicroscope

VCSELvertical-cavitysurface-emittinglaser

PartI Introductionand background

This page intentionally left blank

Introduction

1.1Whatisquantumoptics?

Quantumopticsisthesubjectthatdealswithopticalphenomenathat canonlybeexplainedbytreatinglightasastreamofphotonsrather thanaselectromagnetic waves.Inprinciple,thesubjectisasoldas quantumtheoryitself,butinpractice,itisarelativelynewone,and hasreallyonlycometotheforeduringthelastquarterofthetwentieth century.

Intheprogressivedevelopmentofthetheorytolight,threegeneral approachescanbeclearlyidentified,namelythe classical, semiclassical,and quantum theories,assummarizedinTable1.1.Itgoes withoutsayingthatonlythefullyquantumopticalapproachistotally consistentbothwithitselfandwiththefullbodyofexperimentaldata. Nevertheless,itisalsothecasethatsemi-classicaltheoriesarequiteadequateformostpurposes.Forexample,whenthetheoryofabsorptionof lightbyatomsisfirstconsidered,itisusualtoapplyquantummechanics totheatoms,buttreatthelightasaclassicalelectromagnetic wave.

Thequestionthatwereallyhavetoasktodefinethesubjectofquantumopticsiswhetherthereareanyeffectsthatcannotbeexplainedin thesemi-classicalapproach.Itmaycomeasasurprisetothereaderthat therearerelativelyfewsuchphenomena.Indeed,untilabout30years ago,therewereonlyahandfulofeffects—mainlythoserelatedtothe vacuumfieldsuchasspontaneousemissionandtheLambshift—that reallyrequiredaquantummodeloflight.

Letusconsiderjustoneexamplethatseemstorequireaphoton pictureoflight,namelythe photoelectriceffect.Thisdescribesthe ejectionofelectronsfromametalundertheinfluenceoflight. TheexplanationofthephenomenonwasfirstgivenbyEinsteinin1905, whenherealizedthattheatomsmustbeabsorbingenergyfromthelight beaminquantizedpackets.However,carefulanalysishassubsequently shownthattheresultscaninfactbeunderstoodbytreatingonlythe atomsasquantizedobjects,andthelightasaclassicalelectromagnetic wave. Argumentsalongthesamelinecanexplainhowtheindividual pulsesemittedby‘single-photoncounting’detectorsdonotnecessarily implythatlightconsistsofphotons.Inmostcases,theoutputpulsescan infactbeexplainedintermsoftheprobabilisticejectionofanindividual electronfromoneofthequantizedstatesinanatomundertheinfluenceofaclassicallight wave.Thus althoughtheseexperimentspointus towardsthephotonpictureoflight,theydonotgiveconclusiveevidence.

1.1Whatisquantum optics?3

1.2Abriefhistoryof quantumoptics4 1.3Howtousethisbook6

Table1.1 Thethreedifferentapproachesusedtomodeltheinteraction betweenlightandmatter.Inclassical physics,thelightisconceivedaselectromagneticwaves,butinquantum optics,thequantumnatureofthe lightisincludedbytreatingthelight asphotons.

ModelAtomsLight ClassicalHertzianWaves dipoles Semi-classicalQuantizedWaves QuantumQuantizedPhotons

Table1.2 SubtopicsofrecentEuropeanQuantumOpticsConferences

YearTopic

1998Atomcoolingandguiding,laserspectroscopyandsqueezing 1999Quantumopticsinsemiconductormaterials,quantumstructures 2000Experimentaltechnologiesofquantummanipulation 2002Quantumatomoptics:fromquantumsciencetotechnology 2003CavityQEDandquantumfluctuations:fromfundamental conceptstonanotechnology

Source:EuropeanScienceFoundation,http://www.esf.org.

Itwasnotuntilthelate1970sthatthesubjectofquantumopticsas wenowknowitstartedtodevelop.Atthattime,thefirstobservations ofeffectsthatgivedirectevidenceofthephotonnatureoflight,suchas photonantibunching,wereconvincinglydemonstratedinthelaboratory. Sincethen,thescopeofthesubjecthasexpandedenormously,anditnow encompassesmanynewtopicsthatgofarbeyondthestrictstudyoflight itself.ThisisapparentfromTable1.2,whichliststherangeofspecialist topicsselectedforrecentEuropeanQuantumOpticsConferences.Itis inthiswidenedsense,ratherthanthestrictone,thatthesubjectof quantumopticsisunderstoodthroughoutthisbook.

1.2Abriefhistoryofquantumoptics

Wecanobtaininsightintothewaythesubjectofquantumopticsfitsinto thewiderpictureofquantumtheorybyrunningthroughabriefhistory ofitsdevelopment.Table1.3summarizessomeofthemostimportant landmarksinthisdevelopment,togetherwithafewrecenthighlights.

Intheearlydevelopmentofoptics,thereweretworivaltheories, namelythecorpusculartheoryproposedbyNewton,andthe wave theoryexpoundedbyhiscontemporary,Huygens.The wave theorywas convincinglyvindicatedbythedouble-slitexperimentofYoungin1801 andbythewaveinterpretationofdiffractionbyFresnelin1815.Itwas thengivenafirmtheoreticalfootingwithMaxwell’sderivationofthe electromagnetic wave equationin1873.Thusbytheendofthenineteenthcentury,thecorpusculartheorywasrelegatedtomerehistorical interest.

Thesituationchangedradicallyin1901withPlanck’shypothesisthat black-bodyradiationisemittedindiscreteenergypacketscalled quanta. Withthissupposition,hewasabletosolvetheultravioletcatastrophe problemthathadbeenpuzzlingphysicistsformanyyears.Fouryears laterin1905,EinsteinappliedPlanck’squantumtheorytoexplainthe photoelectriceffect.Thesepioneeringideaslaidthefoundationsforthe quantumtheoriesoflightandatoms,butinthemselvesdidnotgive directexperimentalevidenceofthequantumnatureofthelight.Asmentionedabove,whattheyactuallyproveisthat something isquantized, withoutdefinitivelyestablishingthatitisthe light thatisquantized.

Table1.3 Selectedlandmarksinthedevelopmentofquantumoptics,includingafewrecenthighlights. Thefinalcolumnpointstotheappropriatechapterofthebookwherethetopicisdeveloped

YearAuthorsDevelopmentChapter 1901PlanckTheoryofblack-bodyradiation5 1905EinsteinExplanationofthephotoelectriceffect5 1909TaylorInterferenceofsinglequanta14 1909EinsteinRadiationfluctuations5 1927DiracQuantumtheoryofradiation8 1956HanburyBrownandTwissIntensityinterferometer6 1963GlauberQuantumstatesoflight8 1972GibbsOpticalRabioscillations9 1977Kimble,Dagenais,andMandelPhotonantibunching6 1981Aspect,Grangier,andRogerViolationsofBell’sinequality14 1985Slusher etal.Squeezedlight7 1987Hong,Ou,andMandelSingle-photoninterferenceexperiments14 1992Bennett,Brassard etal.Experimentalquantumcryptography12 1995Turchette,Kimble etal.Quantumphasegate10,13 1995Anderson,Wieman,Cornell etal.Bose–Einsteincondensationofatoms11 1997Mewes,Ketterle etal.Atomlaser11 1997Bouwmeester etal.,Boschi etal.Quantumteleportationofphotons14 2002Yuan etal.Single-photonlight-emittingdiode6

Thefirstseriousattemptatarealquantumopticsexperimentwas performedbyTaylorin1909.HesetupaYoung’sslitexperiment,and graduallyreducedtheintensityofthelightbeamtosuchanextentthat therewouldonlybeonequantumofenergyintheapparatusatagiven instant.Theresultinginterferencepatternwasrecordedusingaphotographicplatewithaverylongexposuretime.Tohisdisappointment,he foundnonoticeablechangeinthepattern,evenatthelowestintensities.

InthesameyearasTaylor’sexperiment,Einsteinconsideredthe energyfluctuationsofblack-bodyradiation.Indoingso,heshowedthat thediscretenatureoftheradiationenergygaveanextratermproportionaltotheaveragenumberofquanta,therebyanticipatingthemodern theoryofphotonstatistics.

Theformaltheoryofthequantizationoflightcameinthe1920s afterthebirthofquantummechanics.Theword‘photon’wascoined byGilbertLewisin1926,andDiracpublishedhisseminalpaperonthe quantumtheoryofradiationayearlater.Inthefollowingyears,however,themainemphasiswasoncalculatingtheopticalspectraofatoms, andlittleeffortwasinvestedinlookingforquantumeffectsdirectly associatedwiththelightitself.

Themodernsubjectofquantumopticswaseffectivelybornin1956 withtheworkofHanburyBrownandTwiss.Theirexperimentsoncorrelationsbetweenthestarlightintensitiesrecordedontwoseparated detectorsprovokedastormofcontroversy.Itwassubsequentlyshown thattheirresultscouldbeexplainedbytreatingthelightclassicallyand onlyapplyingquantumtheorytothephotodetectionprocess.However,

theirexperimentsarestillconsideredalandmarkinthefieldbecause theywerethefirstseriousattempttomeasurethefluctuationsinthe lightintensityonshorttime-scales.Thisopenedthedoortomoresophisticatedexperimentsonphotonstatisticsthatwouldeventuallyleadto theobservationofopticalphenomenawithnoclassicalexplanation.

Theinventionofthelaserin1960ledtonewinterestinthesubject.It washopedthatthepropertiesofthelaserlightwouldbesubstantially differentfromthoseofconventionalsources,buttheseattemptsagain provednegative.ThefirstcluesofwheretolookforunambiguousquantumopticaleffectsweregivenbyGlauberin1963,whenhedescribed newstatesoflightwhichhavedifferentstatisticalpropertiestothose ofclassicallight.Theexperimentalconfirmationofthesenon-classical propertieswasgivenbyKimble,Dagenais,andMandelin1977when theydemonstratedphotonantibunchingforthefirsttime.Eightyears later,Slusher etal.completedthepicturebysuccessfullygenerating squeezedlightinthelaboratory.

Inrecentyears,thesubjecthasexpandedtoincludetheassociateddisciplinesofquantuminformationprocessingandcontrolledlight–matter interactions.TheworkofAspectandco-workersstartingfrom1981 onwardsmayperhapsbeconceivedasalandmarkinthisrespect.They usedtheentangledphotonsfromanatomiccascadetodemonstrateviolationsofBell’sinequality,therebyemphaticallyshowinghowquantum opticscanbeappliedtootherbranchesofphysics.Sincethen,there hasbeenagrowingnumberofexamplesoftheuseofquantumopticsin everwideningapplications.Someoftherecenthighlightsarelistedin Table1.3.

Thisbriefandincompletesurveyofthedevelopmentofquantum opticsmakesitapparentthatthesubjecthas‘comeofage’inrecent years.Itisnolongeraspecialized,highlyacademicdiscipline,withfew applicationsintherealworld,butathrivingfieldwitheverbroadening horizons.

1.3Howtousethisbook

ThestructureofthebookisshownschematicallyinFig.1.1.Thebook hasbeendividedintofourparts:

PartI Introductionandbackgroundmaterial.

PartII Photons.

PartIII Atom–photoninteractions.

PartIV Quantuminformationprocessing.

PartIcontainstheintroductionandthebackgroundinformationthat formsastartingpointfortherestofthebook,whilePartsII–IVcontain thenewmaterialthatisbeingdeveloped.

ThebackgroundmaterialinPartIhasbeenincludedbothforrevision purposesandtofillinanysmallgapsinthepriorknowledgethathas

beenassumed.Afewexercisesareprovidedattheendofeachchapter tohelpwiththerevisionprocess.Thereare,however,twosectionsin Chapter2thatmightneedmorecarefulreading.Thefirstisthediscussionofthefirst-ordercorrelationfunctioninSection2.3,andthesecond istheoverviewofnonlinearopticsinSection2.4.Thesetopicsarenot routinelycoveredinintroductoryopticscourses,anditisrecommended thatreaderswhoareunfamiliarwiththemshouldstudytherelevant sectionsbeforemovingontoPartsII–IV.

Thenewmaterialdevelopedinthebookhasbeenwritteninsucha waythatPartsII–IVaremoreorlessindependentofeachother,and canbestudiedseparately.Atthesametime,thereareinevitablyafew cross-referencesbetweenthedifferentparts,andthemainoneshavebeen indicatedbythearrowsinFig.1.1.AllofthechaptersinPartsII–IV containworkedexamplesandanumberofexercises.Outlinesolutions tosomeoftheseexercisesaregivenatthebackofthebook,together withthenumericalanswersforallofthem.Thebookconcludeswithsix appendices,whichexpandonselectedtopics,andalsopresentabrief summaryofseveralrelatedsubjectsthatareconnectedtothemain themesdevelopedinPartsII–IV.

Fig.1.1 Schematicrepresentationof thedevelopmentofthethemeswithin thebook.Thefiguresinbracketsrefer tothechapternumbers.

2.1Maxwell’sequationsand electromagnetic waves8

2.2Diffractionand interference13

2.3Coherence16

2.4Nonlinearoptics19 Furtherreading24 Exercises24

Classicaloptics

Itisappropriatetostartabookonquantumopticswithabriefreview oftheclassicaldescriptionoflight.Thisdescription,whichisbasedon thetheoryofelectromagnetic wavesgovernedbyMaxwell’sequations, isadequatetoexplainthemajorityofopticalphenomenaandformsa verypersuasivebodyofevidenceinitsfavour.Itisforthisreasonthat mostopticstextsaredevelopedintermsof waveandray theory,with onlyabriefmentionofquantumoptics.Thestrategyadoptedinthis bookwillthereforebethatquantumtheorywillbeinvokedonlywhen theclassicalexplanationsareinadequate.

Inthischapterwegiveanoverviewoftheresultsofelectromagnetism andclassicalopticsthatarerelevanttothelaterchaptersofthebook. Itisassumedthatthereaderisalreadyfamiliarwiththesesubjects, andthematerialisonlypresentedinsummaryform.Thechapteralso includesashortoverviewofthesubjectofclassicalnonlinearoptics. Thismaybelessfamiliartosomereaders,andisthereforedevelopedat slightlygreaterlength.AshortbibliographyisprovidedintheFurther Readingsectionforthosereaderswhoareunfamiliarwithanyofthe topicsthataredescribedhere.

2.1Maxwell’sequationsand electromagnetic waves

Olderelectromagnetismtextstendto call H themagneticfieldand B either the magneticfluxdensity orthe magneticinduction.However,itis nowcommonpracticetospecifymagneticfieldsinunitsoffluxdensity, namelyTesla.Moreover,itcanbe arguedthat B isthemorefundamentalquantity,sincetheforceexperiencedbyachargewithvelocity v in amagneticfielddependson B through F = q v × B .Amoredetailedexplanationofthedifferencebetween B and H andajustificationfortheuseof B forthemagneticfieldmaybefoundin Brooker(2003, §1.2).Thedistinctionis oflittlepracticalimportanceinoptics, becausethetwoquantitiesareusually linearlyrelatedtoeachotherthrough eqn2.8.

Thetheoryoflightaselectromagnetic waveswasdevelopedbyMaxwell inthesecondhalfofthenineteenthcenturyandisconsideredasoneof thegreattriumphsofclassicalphysics.Inthissectionwegiveasummary ofMaxwell’stheoryandtheresultsthatfollowfromit.

2.1.1Electromagneticfields

Maxwell’sequationsareformulatedaroundthetwofundamentalelectromagneticfields:

• the electricfield E ;

• the magneticfield B

Twoothervariablesrelatedtothesefieldsarealsodefined,namelythe electricdisplacement D ,andtheequivalentmagneticquantity H . Sincebothincludetheeffectsofthemedium,wemustbrieflyreview

howwequantifythewaythemediumrespondstothefieldsbefore formulatingtheequationsthathavetobesolved.

Thedielectricresponseofamediumisdeterminedbythe electric polarization P ,whichisdefinedastheelectricdipolemomentper unitvolume.Theelectricdisplacement D isrelatedtotheelectricfield E andtheelectricpolarization P through: D = 0 E + P

Inanisotropicmedium,themicroscopicdipolesalignalongthedirection oftheappliedelectricfield,sothatwecanwrite:

where 0 isthe electricpermittivity offreespace(8 854 × 10 12 Fm 1 inSIunits)and χ isthe electricsusceptibility ofthemedium.By combiningeqns2.1and2.2,wethenfind:

D = 0 r E , (2.3)

where r =1+ χ. (2.4)

r isthe relativepermittivity ofthemedium. Theequivalentofeqn2.1formagneticfieldsis H = 1 µ0 B M , (2.5)

where µ0 isthemagneticpermeabilityofthevacuum(4π × 10 7 Hm 1 in SIunits)and M isthe magnetization ofthemedium,whichisdefined asthemagneticmomentperunitvolume.Inanisotropicmaterial,the magneticsusceptibility χM isdefinedaccordingto:

M = χM H , (2.6) sothateqn2.5canberearrangedtogive: B = µ0 (H + M )

µ0 (1+ χM )H

µ0 µr H , (2.7)

where µr =1+ χM isthe relativemagneticpermeability ofthe medium.Infreespace,where χM =0,thisreducesto:

Inoptics,itisusuallyassumedthatthemagneticdipolesthatcontribute to χM aretooslowtorespond,sothat µr =1.Itisthereforenormalto relate B to H througheqn2.8,andtousetheminterchangeably.

Inanisotropicmaterials,thevalueof χ dependsonthedirectionofthefield relativetotheaxesofthemedium.It isthereforenecessarytouseatensor torepresenttheelectricsusceptibility. Innonlinearmaterials,thepolarization dependsonhigherpowersoftheelectric field.SeeSection2.4.

Magneticmaterialsaretooslowto respondatopticalfrequenciesbecause themagneticresponsetime T1 (see eqnE.21inAppendixE)ismuchlonger thantheperiodofanopticalwave (∼10 15 s).Bycontrast,theelectric susceptibilityisnon-zeroatopticalfrequenciesbecauseitincludesthecontributionsofthedipolesproducedby oscillatingelectrons,whichcaneasily respondonthesetime-scales. B = µ0 H . (2.8)

Theequationforthedisplacementofa wavewithvelocity v propagatinginthe x-directionis:

2.1.2Maxwell’sequations

Thelawsthatdescribethecombinedelectricandmagneticresponseofa mediumaresummarizedin Maxwell’sequations ofelectromagnetism:

Equation2.16representsageneralizationofthistoawavethatpropagates inthreedimensions.

where isthefreechargedensity,and j isthefreecurrentdensity.The firstofthesefourequationsisGauss’slawofelectrostatics.Thesecond istheequivalentofGauss’slawformagnetostaticswiththeassumption thatfreemagneticmonopolesdonotexist.Thethirdequationcombines theFaradayandLenzlawsofelectromagneticinduction.Thefourthis astatementofAmpere’slaw,withthesecondtermontheright-hand sidetoaccountforthedisplacementcurrent.

2.1.3Electromagnetic waves

Wave-likesolutionstoMaxwell’sequationsarepossiblewithnofree charges( =0)orcurrents(j =0).Toseethis,wesubstitutefor D and H ineqn2.12usingeqns2.3and2.8respectively,giving:

Wethentakethecurlofeqn2.11andeliminate ∇× B usingeqn2.13:

Finally,byusingthevectoridentity

andthefactthat ∇ · E =0(seeeqn2.9with =0and D givenby eqn2.3)weobtainthefinalresult:

Equation2.16describeselectromagnetic waves withaspeed v givenby

Infreespace r =1andthespeed c isgivenby:

Fig.2.1 Theelectricandmagnetic fieldsofanelectromagneticwaveform aright-handedsystem.Part(a)shows thedirectionsofthefieldsinawave polarizedalongthe x-axisandpropagatinginthe z -direction,whilepart (b)showsthespatialvariationofthe fields.

Inadielectricmedium,thespeedisgiveninsteadby:

where n isthe refractiveindex.Itisapparentfromeqn2.19that

whichallowsustorelatetheopticalpropertiesofamediumtoits dielectricproperties.

TheusualsolutionstoMaxwell’sequationsaretransverse waves with theelectricandmagneticfieldsatrightanglestoeachother.Consider awaveof angularfrequency ω propagatinginthe z -directionwiththe electricfieldalongthe x-axis,asshowninFig.2.1.With E y = E z =0 and Bx = Bz =0,theMaxwellequations2.11and2.13reduceto:

Itispossibletofindsolutionsto Maxwell’sequationsthatarenottransverseinsomespecialsituations.One oftheseisthecaseofametalwaveguide.Anotheristhatofamaterial with r =0atsomeparticularfrequency.(SeeExercise2.1.)

Thesehavesolutionsoftheform:

where E x0 isthe amplitude, φ isthe opticalphase,and k isthe wave vector givenby:

λm beingthe wavelengthinsidethemedium.Onsubstitutionofeqn2.22 intoeqn2.21,wefind:

Theelectricandmagneticfieldscan alsobedescribedbycomplexfieldswith E x (z,t)= E x0 ei(kz ωt+φ) , and By (z,t)= By 0 ei(kz

Theuseofcomplexsolutionssimplifies themathematicsandisusedextensivelythroughoutthisbook.Physically measurablequantitiesareobtainedby takingtherealpartofthecomplex wave.Theopticalphase φ isdeterminedbythestartingconditionsofthe sourcethatproducesthelight. E x (z,t)= E x0 cos(kz ωt + φ) By (z,t)= By 0 cos(kz ωt + φ) (2.22)

Theequivalentrelationshipfor Hy 0 is Hy 0 = E x0 /Z, (2.25) where Z isthe waveimp edance: Z = µ0 0 r , (2.26) whichtakesthevalueof377Ωinfreespace.

Another random document with no related content on Scribd:

remain freely available for generations to come. In 2001, the Project Gutenberg Literary Archive Foundation was created to provide a secure and permanent future for Project Gutenberg™ and future generations. To learn more about the Project Gutenberg Literary Archive Foundation and how your efforts and donations can help, see Sections 3 and 4 and the Foundation information page at www.gutenberg.org.

Section 3. Information about the Project Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-profit 501(c)(3) educational corporation organized under the laws of the state of Mississippi and granted tax exempt status by the Internal Revenue Service. The Foundation’s EIN or federal tax identification number is 64-6221541. Contributions to the Project Gutenberg Literary Archive Foundation are tax deductible to the full extent permitted by U.S. federal laws and your state’s laws.

The Foundation’s business office is located at 809 North 1500 West, Salt Lake City, UT 84116, (801) 596-1887. Email contact links and up to date contact information can be found at the Foundation’s website and official page at www.gutenberg.org/contact

Section 4. Information about Donations to the Project Gutenberg Literary Archive Foundation

Project Gutenberg™ depends upon and cannot survive without widespread public support and donations to carry out its mission of increasing the number of public domain and licensed works that can be freely distributed in machine-readable form accessible by the widest array of equipment including outdated equipment. Many

small donations ($1 to $5,000) are particularly important to maintaining tax exempt status with the IRS.

The Foundation is committed to complying with the laws regulating charities and charitable donations in all 50 states of the United States. Compliance requirements are not uniform and it takes a considerable effort, much paperwork and many fees to meet and keep up with these requirements. We do not solicit donations in locations where we have not received written confirmation of compliance. To SEND DONATIONS or determine the status of compliance for any particular state visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states where we have not met the solicitation requirements, we know of no prohibition against accepting unsolicited donations from donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot make any statements concerning tax treatment of donations received from outside the United States. U.S. laws alone swamp our small staff.

Please check the Project Gutenberg web pages for current donation methods and addresses. Donations are accepted in a number of other ways including checks, online payments and credit card donations. To donate, please visit: www.gutenberg.org/donate.

Section 5. General Information About Project Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project Gutenberg™ concept of a library of electronic works that could be freely shared with anyone. For forty years, he produced and distributed Project Gutenberg™ eBooks with only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several printed editions, all of which are confirmed as not protected by copyright in the U.S. unless a copyright notice is included. Thus, we do not necessarily keep eBooks in compliance with any particular paper edition.

Most people start at our website which has the main PG search facility: www.gutenberg.org.

This website includes information about Project Gutenberg™, including how to make donations to the Project Gutenberg Literary Archive Foundation, how to help produce our new eBooks, and how to subscribe to our email newsletter to hear about new eBooks.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.