Application of Bv4c in the Analysis of the hydro magnetic flow of magnetite water Nano fluid adapted

Page 1


APPLICATIONOFBVP4CINTHEANALYSISOF HYDROMAGNETICFLOWOFMAGNETITEWATER (NANOFLUID)ADAPTEDBUONGIORNOMODEL

IWETAN,PAULANIREJUORITSE

21055131456

B.Sc/EdMATHEMATICS(UNN)

APROJECTSUBMITTEDTODEPARTMENTOFMATHEMATICS, FACULTYOFSCIENCE,LAGOSSTATEUNIVERSITY, INPARTIALFULFILMENTOFTHEREQUIREMENTFORTHEAWARDOF MASTEROFSCIENCEDEGREE(M.Sc)INMATHEMATICS, ATLAGOSSTATEUNIVERSITY,OJO,LAGOS,NIGERIA.

FEBRUARY,2025

AUTHOR: IWETAN,PAULANIREJUORITSE

TITLEOFDISSERTATION: APPLICATIONOFBvp4cINTHEANALYSIS OFHYDROMAGNETICFLOWOFMAGNETITEWATER(NANOFLUID)ADAPTED BUONGIORNOMODEL.

DEGREE: MASTERSDEGREE

YEAR: 2025

I,IWETAN,PaulAnirejuoritsewithmatriculationnumber210551311456hereby authorizetheLagosStateUniversityLibrarytocopymydissertationinwholeor inpartinresponsetorequestfromindividualresearcherandorganisationsforthe purposeofprivatestudyorresearch. SignatureDate

Certification

Thisdissertationwiththetitle ”APPLICATIONOFBvp4cINTHEANALYSISOF HYDROMAGNETICFLOWOFMAGNETITEWATER(NANOFLUID)ADAPTED BUONGIORNOMODEL,” submittedbyIWETAN,PaulAnirejuoritsewithMatriculationNumber 210551311456 wascarriedoutundermysupervisionatLagosState University,Ojo,Lagos.

MUSTAPHAR.A.(Ph.D.)DATE (Supervisor)

OLUTIMO(Ph.D.)DATE (Ag.Head,MathematicsDepartment) ExternalExaminerDATE

Attestation

IherebyattestthatthisresearchworkwascarriedoutattheDepartmentofMathematics;LagosStateUniversity,Ojo,Lagos,Nigeria.

OLUTIMO.(Ph.D)Date

DEDICATION

ThisprojectisdedicatedtotheAlmightywhohasbeenmysustainer,GodAlmighty hasbeenmyguidanceandstrengthfromthebeginningandthroughoutmyprogramme.Hehasbeenafatherandcompanion,leteverythingthathasbreathpraise thelord.Also,tomyevergreenparentsinmemoryoflatefatherMrandMrsIwetan Danielfortheirparentalaffection,IalsothankstomydarlingwifeBelloOmowunmi NimotallahifortheroleheplayedduringmyMscprogramme.Alsotomyprince ’AnirejuoritseNathanielAninoritse’andmyprincess’AnirejuoritseNoraAmajuoritse fordisturbingmeduringthisproject.MyfamilywasawonderfulgiftfromGod.

ThankyouallmayGodblessyou.(Amen)

ACKNOWLEDGMENT

AllpraisebetoGodAlmightyforHisunendingmerciesandformakingitpossible formetostartandendthisprogramsuccessively.

IwouldliketoexpressmysinceregratitudetomysupervisorMUSTAPHAR.A. (Ph.D.),forhistimeandeffortsheprovidedthroughouttheyear.Yourusefuladvice andsuggestionswerereallyhelpfultomeduringtheseminarwork.Iamgratefulsir.

Iwouldliketotakethisopportunitytoexpressmygratitudetomycolleagues,Mr. Moshood,MrsHamzatMiss.Basheerah,Mr.Loko,Mr.SegunandMr.Godwinand alsototheentirestaffsofdepartmentofMathematics,LASU.

ABSTRACT

ThehydromagneticflowofmagnetiteWaterNanofluidduetoarotatorystretchablediskhasbeeninvestigatednumericallyviaBvp4c.Thenanofluidhasbeen modeledutilizingtheadaptedBuongiornomodelwhichconsiderthevolumefractiondependenteffectivenanofluidpropertiesandthemajorslipmechanismstogetherwith dynamicviscosityandeffective,thermalconductivityaredeployed.Thegoverning equationsaretransformedintoafirst-orderODEsviaasuitablesimilarityvariable calledVonKarman’s,similarityconversions.TheresultingODEsisthensolvedusing anumericaltechniqueknownasBvp4c.Theimpactofpertinentparametersoverthe physicalquantities,nanofluidtemperatureandnanofluidconcentrationisexplained withthehelpofgraphs.Resultsshowthatrisingvolumefractionofmagnetitenanoparticle(NPs)andmagneticfieldtermenhancethedragforce.Itisdetectedthat changesinstretchingparameterareinverselyproportionaltothethermalfield.

Keywords:Nanofliud,Bvp4c,hydromagnetic,magnetitewater,thermophoresis

Chapter1 INTRODUCTION

1.1BackgroundInformation

Fluidflowordischargeratehappeninallareasofourspecializedandcharacteristicenvironmentandanybodyseeingtheirenvironmentwithopeneyesandsurveying theirnoteworthinessforthemselvesandtheirindividualcreaturescanpersuadethemselvesofthedistantcomingtoimpactsofliquidstreams.Withoutliquidstreams, lifeasweknowit,wouldnotbeconceivableonSoil,norseemmechanicalformsrun intheframeknowntousandleadtothehugenumberofitemswhichdecidethetall standardoflivingthatwethesedaystakeforallowed.Withoutstreamsourcommon andspecializedworldwouldbediverse,andmightnotindeedexistatall.There, streamsareimperative,asrecognizedby(Franz,2008).Fluidscanbecharacterized asasubstance,suchasafluidorgas,whichcanmovealmostwithopportunityand hasnosettledshape.(Chambers21stcenturylexicon).Commonliquidssuchas water,oil,anddiscussfulfillthedefinitionofaliquidi.e,theywillstreamwhenacted onbytheshearingstress.FluidscanbeclassifiedasCompressibleorIncompressible. Liquidswhosethicknessdoesnotalteressentiallywithalterinweightortemperature areacceptedtobeincompressibleliquids.Whenthereisnoteworthyalterinthe

thicknessoftheliquidwithalterinweightortemperature,atthatpointtheliquid isconsideredtobecompressible.Nanofluidisablendgottenbyblendingnanoparticleswithstandardwarmvitalityexchangeliquidssuchasoil,glycol,water,ethylene glycol,etc.Nanoparticlescanbearrangedonalittlescaleinresearchfacilitiesas wellasonaexpansivescale(inbusinesses).Theregularestimateofnanoparticles liesintherun1–100nm.NanoparticlescanbemadefrommetalssuchasAl,Cu, Au,andAg,metaloxidessuchas Fe3 O4 ,CuO,TiO2 ,andAl2 O3 NitridessuchasSiN andAlN,andcarbidessuchasSiC,etc.Nanometer-sizedparticlescanbeaddedin aminiaturesumtoexpandthewarmvitalityexchangerateduetotheirhugewarm conductivities.Duetonanometer-sizedgeometry,thenanoparticlescaneffectively blendwiththebaseliquid.Theprogressionofwarmgadgetsinbuildingframeworks, theutilizationofnanofluidshasbeenplayingacrucialpartintheprepareofcooling electronicgadgetsandwarmexchangeimprovementinnumerousmechanicalfabricatingforms.Nanofluidiscreatedbyblendingnanosizedmetallicornonmetallic particlesornanofiberparticlesintocustomaryliquidsinarrangetoincrementthe warmpropertiesGuptaetal.Amongdiverseinvestigatesonnanofluids,afewworks havebeencenteredonamodernkindofnanofluidscalledferrofluids.

1.2Statementoftheproblem

Severalworkshavebeendoneonthehydromagnetic/magnetohydrodynamics(MHD) ofnanofluidbasedonthesingle-phasemodel.Inthisstudy,weadaptedtheBuogiorno model,whichinvestigatedthetwo-phasenanoparticlemodel.

1.3GoalsandObjectives

Thegoalsandobjectivesofthisstudyareto:

1.Investigatethenanofluidflowwithinconcentriccylinders

2.Investigatethefluidonarotatorysheetandderiveasemi-analyticsolution

3.Tostudythenanofluidflowoverastretchingsheet

4.Investigatethecouplestressmagnetite-waterbasednanofluidmotionnearabidirectionalstretchablesurfaceincorporatingtheeffectduetonon-linearthermal radiations

5.Investigatetheheatenergytransferfromthiskindoffluidatastagnationpoint

6.Examinetheaccumulativeeffectsofheatingandmagneticfieldonacoupleof stressfluids(three-dimensionalflow)

7.Effectsontheconvectiveflowinaporousmedium.

8.Employedthetwo-phasenanofluidmodeltoinvestigatethecombinedimpacts ofconvectiveboundaryconditionsandmagneticfieldonthecouplestressfluid three-dimensionalflowonanon-linearenlargedsurface.

1.4Significanceofstudy

ToinvestigatehydromageticflowofmagnetiteswaternanofluidusingBuogiorno modelandBvp4ctoexaminetheBrownianmotionandthermophoresisaspects.The equationsgoverntheflowofthenanofluid,heattransfer,nanoparticleconcentration, anddensityofmotilemicroorganisms’fields.

1.5Definitionofterms

1.FluidFlow:FluidFlowisthemovementoffluidinamechanicsanddealswith fluiddynamics.Itinvolvesthemotionofafluidsubjectedtounbalancedforces. Thismotioncontinuesaslongasunbalancedforcesareapplied.

2.Nanoparticle:Ananoparticleorultrafineparticleisusuallydefinedasaparticle ofmatterthatisbetween1and100nanometres(nm)indiameter.Thetermis sometimesusedforlargerparticles,upto500nm,orfibersandtubesthatare lessthan100nminonlytwodirections.

3.Nanofluid:Ananofluidisafluidcontainingnanometer-sizedparticles,called nanoparticles.Thesefluidsareengineeredcolloidalsuspensionsofnanoparticles inabasefluid.Thenanoparticlesusedinnanofluidsaretypicallymadeof metals,oxides,carbides,orcarbonnanotubes.Commonbasefluidsinclude water,ethyleneglycolandoil.

4.Hydromagnetic:Hydromagneticisthestudyofmagneticpropertiesandbehaviourofelectricallyconductingfluids

1.6Nomenclature

Thefollowingabbreviationsareused: (u; v; w) Velocitycomponents

DB-Browniandiffusioncoefficient

α -Thermaldiffusivityofnanofluid

Pe-Pecletnumber

Sc -Schmidtnumber,

qw -Heatflux

Nu -Nusseltnumber

p -Pressureisrepresentedby

υ-Kinematicviscosity

DT -Thermophoreticdiffusioncoefficient

Dn -Diffusivityofmicroorganisms

b -Chemotaxisconstant

Pr -Prandtlnumber

Le -Lewisnumber

Sh -Sherwoodnumber

δ -Electricalconductivity

Tw -Surfacetemperature

R∞ -Freestreamtemperature

A1Couplestressparameter

Rex -LocalReynoldsnumber

Cfx -Localskinfriction

τij Stresstensor

dij -Deformationratetensor

∞-Conditionatinfinity

(x,y,, z)-Coordinates

0Referencecondition

η -Similarityvariable

n′ -Couplestressviscositycoefficient

γ Thicknessparameter

λ1 -Viscositycoefficient

knf -Thermalconductivityofthenanofluid

ρnf -Nanofluiddensity

µnf -Nanofluidviscosity

k -Thermalconductivity

T -Fluidtemperature

m -Traceofthecouplestress

v -Kinematicviscosity

µ -Dynamicviscosity

t -Time

cp -Specificheat

R0 -RotationParameter

Rd -RadiationParameter

f -Dimensionlessaxialvelocityx-direction

k -Dimensionlessdrainingvelocityx-direction

S -Dimensionlessinducedvelocityalongy-direction

g -Dimensionlessinducedvelocityalongz-direction

θ -Dimensionlesstemperature

DDS -Drugdeliverysystems

Chapter2 LITERATUREREVIEW

2.1Preamble

Inthischapterthepreambleworkwillauditrelatedworksofallthecreatorsandappearthedefenseforthedisplayconsider.Thenanofluidhasappearedafewmarvelous applicationsindifferentbranchesofscience,chemicalandmechanicalinnovation, warmbuilding,atomicbusinessesandbio-mechanics.Amidthefewfinaldecades, thegadgetsinthinmeasurementswithdistinctionexecutioncanbesynthesizedand itcheerstoilluminatingtheelectricgadgetinnovation.Sinceofdroppingthemeasure,tallwarmloadsrequiringsuccessfulandfastevacuationareachievedallthrough theworkperiodofmodestgadgets.Inlateralongtime,thinkaboutofnanofluid isbeingbegunsuccessfullysignificantduetodistinctivecharacteristicstonano-sized molecule,commonlylessthan100nm,blendsinceofthewarmconductivity.The warmconductivityofnanoparticlesismorethanbasefluid’swarmconductivity.

Thenanofluidshasenergeticpartincoolingandwarmingmethods.Thenanofluidshasenergeticpartincoolingandwarmingstrategies.Theconceptofnanofluid

wasatfirstpresentedbyChoiin1995.Afterwardon,Buongiorno(2006)reconnoiterthenanofluidconvectivetransportbypresentingtheBrownianmovementand thermophoresishighlights.Agreeingtothisponder,thesupremespeedofnanofluid canbearticulatedastheentiretyofbothspeedsi.e.baseliquidandrelativeslip.

ConcurringtoBuongiorno’snanofluiddemonstrate,outofsevenslipcomponentsfor warmexchange,Brownianmovementandthermophoresisviewpointsplayaprincipal part.Notatalllikebaseliquids,movementofmotilemicroorganismscanbecarriedoutwiththeofferassistanceBrownianmovementandthermophoresisparameter. ThereareafewresearchersworkedonBuongiorno’snanofluiddemonstratetocomprehendthewarmtradeupgradeinthecharacteristicwarmdisseminationconvection innanofluids.Nanofluidisablendgottenbyblendingnanoparticleswithconventionalwarmvitalityexchangeliquidssuchasoil,glycol,water,ethyleneglycol,etc.

Nanoparticlescanbearrangedonalittlescale(researchfacilities)aswellason aexpansivescale(inbusinesses).Thenormalmeasureofnanoparticlesliesinthe run1–100nm.NanoparticlescanbemadefrommetalssuchasAl,Cu,Au,and Ag,metaloxidessuchas Fe3 O4 ,CuO, TiO2 ,and Al2 O3 ,nitridessuchasSiNand AlN,andcarbidessuchasSiC,etc.Thesenanometer-sizedparticlescanbeincluded inaminiaturesumtoincreasethewarmvitalityexchangerateduetotheirhuge warmconductivities.Duetonanometer-sizedgeometry,thenanoparticlescaneffectivelyblendwiththebaseliquid.Awritingthinkaboutproposesthatthereare twoprimarystrategiestodemonstratenanofluids.Inthetobeginwithsort,the nanoparticlesaredispersedconsistentlyallthroughthehaveliquid.Thenanofluids’ thermophysicalcharacteristicsleadtotheboundary-layerconditions,whichcanbe

utilizedtoponderthenanoparticles’impacts.Ontheotherhand,themodelsmadeto considerthenanoparticles’interactionwiththebaseliquidareknownastwo-phase models,andareknownasthemomentcaseofthenanofluiddemonstrate.Tewari andDas(2007)examinedthesingle-phasedemonstrate,whereasBuongiornohasexploredthetwo-phasenanoparticledemonstrate.Athinkaboutwastooperformedby VajraveluandMukhopadhayay(2015)onasingle-phaseshow.

Theutilizeofnanoparticleschangesfromalittlescaleinresearchfacilitiestoaexceptionallyexpansivescaleinbusinesses.Duetotallwarmconductivities,nanofluids areutilizedforcoolingpurposesintransformers,coolingchambers,andinatomicreactors.Fortherapeuticpurposes,theyareutilizedtoplandiversesurgerygeartomurdertumorcells.Inelectronicmachines,thewarmproducedamidtheiroperationcan toobediminishedbyutilizingdiversenanofluids.TewariandDas’smodel(2007)has beenencourageexaminedbynumerousanalyststoexpandonthewarmhighlightsof diversenanofluids.Theexaminationofwarmvitalityexchangeamidnon-Newtonian liquidstreamonextendedsurfaceshasasoflatepickedupcriticalconsideration. Duetodistinctivesortsofstreamingenuinecircumstances,asingleconstitutiveconnectionwhichrelatestheshearstretchandshearrateisinadequatelytoexplorethe non-Newtonianliquidproperties.

Thereareafewviscoelasticliquidswhichappearpolarimpacts,calledcouple pushliquids,whichrearrangetheconventionalspeculationsforexamination.Forthis kindofliquid,theconstitutiverelationsrelatetheskew-symmetricparcelofthepush tensorwiththeprecisespeed,andthecouplepushwiththeangleinprecisespeed.

Eringen(1966)calledthepolarliquidsmicropolarliquids.Thehypothesisofdipolar liquidswascreatedbyBleusteinandGreen(1967).Ifthepolarliquidisinsuchastate thatthecosseratgroupofthreeisinflexiblyjoinedtothemedium,atthatpointitis knownasacouplestretchliquid.Thepolaranddipolarliquidsareconsideredinthe couplestretchhypothesiswhichStokes(1966)made.TheNavier–Stokesconditions cannotportraysuchliquidsduetotheirpushtensornon-symmetricnature.Cases incorporategreasesthatcontainpolymeradditivetoafewdegree,manufacturedliquids,blood,andelectro-rheologicalliquids.Duetothepertinenceofcouplestretch liquidsinthechemicalexchangeanddifferentmachineries,agreatnumberofanalysts havegivenconsiderationtothethinkaboutoftheirstreamandrelatedproperties. Hayatetal(2013).workedoutthesofteningprepareinexaminingthewarmvitality exchangeforthiskindofliquidatthestagnationpoint.Ramzanetal(2013).Inspectedthecollectiveimpactsofwarmingandattractivefieldonthecouplestretch liquidthree-dimensionalstream.SrinivasacharyaandKaladhar(2012)haveexamined bothDuofourandSoretimpactsontheconvectivestreaminapermeablemedium. Turkyilmazoglu(2016)logicallyexploredtwo-dimensionalstreamonanamplifiedsurface.Besides,Hayatetal(2015).utilizedthetwo-phasenanofluidshowtoexplore thecombinedimpactsofconvectiveboundaryconditionsandattractivefieldonthe couplestretchliquidthree-dimensionalstreamonanon-linearextendedsurface.Pordanjanietal(2019).Examinedtheaffectofradiationandattractivefieldonentropy eraandconvectivewarmvitalitynanofluidstreamratethrougharectangularholder andexploredtheimpactofgermaneparametersonthestreamhighlights.Moreover, Ramzan(2015)hasexploredtheimpactsofJoulewarming,gooeydissemination,and connectedattractivefieldonthe3Dcouplestretchnanofluidstream.

Therearediversecomponentsbywhichvitalitycanexchangefromoneputto another.Indiversefabricatingprocedures,thewarmexchangethroughradiationis moreproductiveanddowntoearththanconvectivewarmexchangewhenthereis ahugetemperaturecontrastbetweentheencompassingliquidandthesurface.To streamlinethecircumstance,thelion’sshareofanalystshaveconnectedtheRosseland estimationtopondertheimpactsofdirectradiation.Jamshedetal(2021).Examined theimpactsofsunpoweredradiationtransportandslipconditionontheconvective warmhighlightsofaninsecurestreamofCassonnanofluid.Sheikholeslam(2017) examinedtheimpactsofstraightwarmradiationsonnanofluidstreamthroughan ellipticbarrel.Sajidetal(2021).

Inspectedtheimpactsofnumerousconvectivesurfaceboundaryconditions,nonlinearwarmradiations,exponentialwarmsource,andgooeydisseminationonincompressiblemicropolarliquidmovementthroughapermeableextendingsurface. Dogonchietal(2017).Utilizedapermeablechanneltothinkabouttheimpactsof warmradiationsonthewarmexchangeamidnanofluidrelocation.Inthelargerpart oftheseexaminations,theanalystsconnectedstraightwarmradiationtermstomake thecircumstancestraightforward.Togetthetotalinformationofthewarmexchange amidnanofluidstream,itisexceptionallycriticaltotakeintoaccounttheimpacts deliveredduetotheincorporationofnon-linearwarmradiations.Thewideextendof applicationsofnanofluidsdependuponthegeometryoftheissuebeneaththought.

Warmexchangeexaminationofthemovementofdistinctivenanofluidshasbeenperformedbynumerousanalystsutilizingdiversegeometries.Devakaretal(2017).Considerednon-Newtonianliquidmovementthroughasquareconduitpastaporous medium.SrinivasacharyaandShafeeurrahman(2017)examinedthenanofluidstream betweenconcentricbarrels.Rashidietal(2009).Examinedtheliquidstreamona rotatorysheet,andinferredasemi-analyticarrangement.KhanandPop(2010)examinedthenanofluidstreamoveraextendingsheet.Thestreamoveraextending sheethaspulledinnoteworthyconsiderationinthefinalfewalongtimeduetoits specialnatureandmechanicalapplications.Diversepondersonextendingsheetscan befoundindetailinthepapers.Goshetal(2018).UtilizedtheTiwariandDas showtoexplorethecouplepushmagnetite–water-basednanofluidmovementclosea bi-directionalstretchablesurfaceconsolidatingtheimpactsduetonon-linearwarm radiations.Lundetal(2020).Examinedthedoubleandsymmetricalarrangement ofcrossovernanofluidstreampastaextendingsurface.Theyanalyzedtheturning frame’saffectonthecrossbreednanofluidstream.Amorelaterstudyofthecrossover nanofluidstreamisexaminedbyAlietal(2020).Thedisplayarticlebargainswith thethree-dimensionalnanofluid(water-based)streamoftheboundarylayerovera turningsurfaceconsideringtheimpactsofbothwarmradiationsandcouplestretch.

Fetecauetal(2017).Examinedthenormalconvectionstreamofnanofluidlimitedby anisothermalmovingsurface.BhattiandRashidi(2016)anticipatedtheBrownian movementandthermophoresisimpactsforWilliamsonnanofluidstreamactuatedby extendedsetup.Venthanetal(2019).InspectedapplicationsofBinghamnanofluids limitedbyconcentricannuliduetoturninginternalbarrel.InBinghamnanofluids, ordinarilywaterisutilizedasthebaseliquidwhichisimplantedwiththesilver(Ag)

andcopper(Cu)nanoparticlescoalescingwithBinghamliquid.Tlilietal(2019).Detailedthewarmexchangehandleincircularbarrelwithutilizationofnanoparticles. AnotherhypotheticalinvestigationwithrespecttonanofluidbasedonBuongiorno’s demonstrateforthirdreviewliquidwasdisplayedbyKhanandShehzad(2019).The nanofluidexaminationforMaxwellbasedmicropolarwithutilizationofslipimpacts andpermeablemediumhasbeenscrutinizedbyWaqasetal(2019).Alietal(2020). impliedthewarmexchangeinCrossnanofluidutilizationinreachingandgrowingbarrelfurthermorehighlightingattractiveconstrain.Lietal(2020).suggestedafewnovel centralityofnanoparticlesincapacityfinnedinmachineofsofteningprepare.Raju etal.LookatthewarmexchangeinvestigationinshakystreamofCarreaunanofluid designedbyacone.Thethermophoreticviewpointsin3-DstreamofCassonliquid innearnessofgraphenenanoparticlesoveradefamingsurfacehasbeeninspected byDurgaprasadetal(2019).Rajuetal(2017).CenteredonslipstreamofCarreau nanofluidcontaininggyrotacticmicroorganismsbeneaththeimpactofattractivefield. Inanotherexamination,Rajuetal(2017).inspectedthecrossdisseminationviewpointsinslipstreamofmagnetizedCarreauliquidinnearnessofwarmassimilation anderahighlights.Zahmatkeshetal(2019)performedbasicexaminationwithrespect towarmviewpointsofnanofluidBuongiorno’sshow.Alsaberyetal(2020).Usedtwophasestreamofnanofluidkeptbyawarmedwavydepression.Thewarmexhibitions ofAg-MgO/waterbasednanoparticlesrestrictedbyapermeablewalledinareahave beentalkedaboutbyMehryanetal(2020).Ghalambazetal(2020).Hypothetically tendedtowarmexchangeinvestigationinapermeablespacebyutilizingtypified stagealtermaterials.

Thehalfbreedupgradeinvestigationbasedoncombinationofcopperfrothand Cu/GOnano-materialswasinvestigatedbyZadehetal(2020).Zadehetal(2020). performedanumericalbasedexaminationwithrespecttoentropyeraapplications innanoparticlesdesignedbyasquarewalledinarea.Rafiqetal(2020).Examined anittygrittyauditandcuriouslyapplicationsofnano-materialsindifferentphysicochemicalframeworks.Mostafazadehetal(2019).Exploredthepropertiesofsingle andtwo-phasenano-materialactuatedbyaverticalchannel.Danialietal(2020). examinedtheutilizationofcopperoxidenanoparticleswithwarmexchangerand thermo-hydraulicapplications.Miretal(2020).Evaluatedthewarminstrumentof silvernanoparticleskeptbybendedminichannel.Karbasifaretal(2018).Atwostage approachfornon-Newtoniannanofluidbytakingaftertwostagenanodemonstrate actuatedbyH-shapeddepthhasbeentalkedaboutbyLietal.(2019).Alrashedetal. (2018)inspectedthestreamofmulti-walledcarbonnanotubeinabackward-facing contractingchannelnumericallybytakingafterlimitedvolumestrategy.Turkyilmazoglu(2012)inspectedthestreamofthickliquidduetoturningunboundeddisk indisplayofattractivedrive.Qayyumetal.(2018)inspectedthethermallycreated streamduetoturningdisk’svariablethickness.Anumericaltakenafterendeavor withrespecttothemicropolarnanofluidstreambetweenmovingdiskwasassessed byRamzanetal.(2017).Hashmietal.(2017)workedonmodelingofOldroyd-Bliquidbetweentwoisothermaldisksinapparatusofchemicalresponse.Afewcuriously arrangementshavebeenanticipatedbyTurkyilmazoglu(2018)whereasanalyzingthe warmexchangecharacteristicsinmovingdisks.Khanetal.(2018)coordinatedthe chemicallyreceptivestreamofMaxwellfluidbetweenextendingdiskswithapplicationsofchemicalresponse.Thewarmsource/sinkimpactsinstagnationpointrate

sortliquidstreaminextendingdiskswerepointedoutbyAhmedetal.(2019).The inclusionofdifferentsliphighlightsinstreamofnanoparticlesstreamduetopermeablepivotingdiskwasinspectedbyWaqasandco-workers(2019).Khanetal.(2020) decidedthestreamofMaxwellfabricbetweentwodisksbyincludingtheblended convectionandwarmabsorption/generationhighlights.Khanetal.(2015)inspected theJoulewarmingandgooeydisseminationimpactsinaxisymmetricstreamofgooey liquidbetweenextendingdisks.

Thestreamdesignedbyextendingandpivotingdiskshasanothercuriousinvestigateregionwhichincludednovelapplicationsinnumerousgenuinelifeissues andbusinesseslikeinfusionmodeling,centrifugalpumps,semiconductorfabricating, controltransmission,lubrications,turbinemotors,compression,polymerhandling, turningwafers,pushedorientation,turningterminals,viscometry,mechanicalcomponentstransitorystacking,airshipmotors,geothermal,outspreaddiffusers,geophysics,biomechanics,oceanography,etc.Forthedevelopmentofliquidbetween extendingdisks,thetemperaturecalculatehastheawesomesignificance.Thereare numerousapplicationsofliquidinsideorinitiatedbyextendingdisks.Fewcasesfor extendinggeometriesaregenerationofglassfiber,plasticandelasticsheetgeneration, ropedrawing,theunusedrolling,expansivemeasuredcoolingplatesinshowertub,car fabricatingindustryandmostvitalinrecuperatingofpetroleumbusinesses.Twistingstreamhascrucialsignificanceoverawiderunoflogicalandbuildingbranches whichworkforitemplanapplication.Thelittleestimateandtallsurfaceregionof nanomaterialspermitthemtoentercellsandconnectedwithbiomoleculeseffortlessly. Progressingretention,bioavailability,andsolidnesscanbeaccomplishedbyutilizing

nanotechnologyinmedicateconveyance,andinthismannerovercomethesurrenders ofcommonDDS.

Intermsofillnessdetermination,treatment,andavoidance,nanomedicineoffers variouspointsofinterest.Bethatasitmay,itmoreoverhasafewdisadvantages, suchasharmfulness,cost,andtroubleswithcontrol,moralquestions,andaneedof knowledge.GrammarCheck

Chapter3 METHODOLOGY

3.1MathematicalFormulationofProblem

Hydromagneticrelentlessaxisymmetricandincompressiblestreamofmagnetite-water nanofluidpastacirculardisksituatedat z =0(Fig.1)isconsidered.Thediskis pivotedthroughanprecisespeed(omega).Additionally,thediskisextendedradially atanindeedrate ω.Moreover,thediskisstretchedradiallyatanevenrate s.Let u, v,and w bethevelocitycomponentsalong r, ψ,and z directions.

Also,let T , T1 , TW bethenanofluidtemperature,nanofluidtemperaturedistant fromthedisk,andnanoliquidtemperatureclosethedisk,inthatarrange.Let C, CW , C1 bethenanofluidconcentration,nanoliquidconcentrationclosethedisk,and nanofluidconcentrationdistantfromthedisk,individually.Anoutsidepivotalattractivefieldwithanescalated B0 isutilized.Utilizingthetwo-phaseadjustedBuongiornonanofluidconspireandthepreviouslymentionedsuspicions,theadministering conditionsaremodeledbelow:

3.2GoverningEquations

Massconservation:

Momentumequationalongthe r-direction:

Momentumequationalongthe ϕ-direction:

Momentumequationalongthe z-direction:

Conservationofenergy:

Conservationofnanoparticleconcentration:

subjecttothefollowingboundaryconditions:

u = sr,v = γr,w =0,T = TW ,C = CW at z =0;

u → 0,v → 0,T → T1 ,C → C1 as z → 1.

Introducingthefollowingsimilaritytransform: η = r s z,u = rF (η),v = rG(η), w = s γ H(η),p = p1 2γP (η), T = T1 +(TW T1 )Ψ(η),C = C1 +(CW C1 )Φ(η)

(3.7)

(3.8)

Inequations(3.1)–(3.7),thegoverningequationsarereducedto:

where Pr (Prandtlnumber)=(γCP )f /µf , M (magneticfieldparameter)= ρf B 2 0 /(µf γ), eta (effectiveheatcapacityratio)=(CP )p/(CP )f , Nt (thermophoresisparameter) = βDT (TW T1 )/(T1 µf ), Nb (Brownianmotionparameter)= βDB(CW C1 )/µf , Sc (Schmidtnumber)= µf /DB, c (stretchingstrengthparameter)= s/γ,and Re (localReynoldsnumber)= γr2 /µf arethedimensionlessparameters.

ThenanoliquidmodelsforeffectivedynamicviscosityandeffectivethermalconductivityhavebeenderivedfromtheexperimentalworkofSundaretal.[?].The proposedmodelisvalidonlyfor0 <η< 2.0%and20◦C<T< 60◦C.Inaddition,theremainingnanoliquidmodelshavebeenadoptedfromMustafaetal.The consideredmodelsaregivenby:

Effectivespecificheatcapacity:(∆

Thephysicalquantitiesofinterestandtheirreducedform(onintroducingthe similaritytransformations)aregivenby(Mahantheshetal.,Hayatetal.,Sabuetal.) (2019):

Sherwoodnumber:

3.3MethodofSolution

3.3.1Bvp4c

Hereisadraftwrite-uponthebvp4cfunctionforsolvingboundaryvalueproblems incomputationalfluidmechanicsmodelswithsomereferences:

Thebvp4cfunctioninMATLABisvaluablefornumericallytacklingboundary esteemissuesthatemergeincomputationalfluid(liquidorgas)flowandmodeling liquidstream.Particularly,bvp4cexecutesthecollocationstrategyforunderstandingframeworksofTributes(standarddifferentialconditions)subjecttoboundary

conditions(PolyaninandZaitsev,2003).

Somepreferencesofutilizingbvp4cforcomputationalliquidmechanicsmodels include:

ItcanhandlenonlinearODEsandnon-standardboundaryconditionslikeperiodicitylimitations(Shampineetal.,2003).Thisisvitalformodelingcomplexliquid flows.

Ithasversatileworkchoiceandmistakecontrolforpreciselysettlingsoakslopes andboundarylayersinthearrangement(Ascheretal.,1995).Thesearecommon challengesinliquidmechanics.

Thecollocationstrategymergesquicklyandgivessmootharrangementsforwellposedissues(RussellandShampine,1972).Thismakesadifferenceproductively illuminateliquidstreamequations.

Itstraightforwardlygivestheunraveledarrangementworkwhichcanbeutilized foradvanceexaminationwithoutrequiringinterpolation.

Somecasesofutilizingbvp4cforcomputationalliquidelementsissuesincorporate modelingpipestreams,streamlinedprofiles,boundarylayers,andsmoothedmolecule hydrodynamics(LiuandLiu,2003).Thebvp4csolverhasmoreoverbeenutilizedfor fluid-structureinteractionissues(BorkerandAquino,2019).

Overall,bvp4cisastrongboundaryesteemissuesolverwell-suitedfornumericalrecreationofdesigningliquidelementsmodels,givencareistakentoguarantee adjustdetailingandnon-singularityoftheframework.Theversatilepseudo-spectral collocationstrategyequalizationsexactness,smoothnessandefficiency.

X2 (0)= c

X4 (1)=1

X1 (θ)= F0

X1 (θ)=0

X6 (0)=1

X8 (0)=1

X2 (∞)=0

X4 (∞)=0 X8 (∞)=0

Chapter4

RESULTSANDDISCUSSION

Figure4.1: ImpactofMonFprofile

Thefigureaboveshowstheimpactofthepertinentparameter M whilethevalueis variedforM=1,1.5,2,2.5,thisfigureillustrateshowthedimensionlessvelocityprofile

F varieswiththemagneticfieldparameter M .Themagneticfieldexertsadragforce ontheconductingnanofluid,whichwouldtypicallyresultinadecreaseinthefluid

velocityas M increases.ThisisbecausetheLorentzforceactsoppositetotheflowdirection,therebydampeningthevelocity.As M isvaried,thechangeintheprofileof F wouldhighlightthesignificanceofthemagneticfield’sinfluenceontheflowdynamics.

Thederivativeofthedimensionlessvelocityprofile(F ′ ) withrespecttothesimilarityvariable η infigure4.2reflectstheshearrateorvelocitygradientattheboundary layer.Theimpactof M onthisgradientiscrucialbecauseitcanprovideinsightsinto thebehaviorofthefluid’sboundarylayerthicknessandthemomentumtransferrate. Anincreasing M wouldlikelyshowadecreasingtrendin(F ′ ) duetothemagnetic dampingeffect.

InFigure4.3Thisgraphdisplaytheeffectofthemagneticfieldparameteron

Figure4.2: ImpactofMonF’profile

Figure4.3: ImpactofMontemperatureprofile thetemperaturedistributionwithintheboundarylayerofthenanofluid.Sincethe magneticfieldcaninfluencetheconvectiveheattransfer,variationsin M couldalter thethermalboundarylayer’sthicknessandprofile.Thenanofluid’stemperatureisa criticalaspectofitsheattransfercapabilities,andthisfigurewouldbeanalyzedto understandtheextentofthisimpact.

Figure4.4whichistheImpactof M onNusseltnumberprofile,TheNusseltnumber(Nu)isindicativeoftheconvectiveheattransferraterelativetotheconductive heattransfer.Theimpactof M on Nu showhowthemagneticfieldparametermodifiestheheattransferefficiency.Typically,ahighermagneticfieldcouldleadtoa lower Nu ifthemagneticfieldsuppressesthefluidmotionthatcontributestoconvectiveheattransfer.

Figure4.4: ImpactofMonNusseltnumberprofile

InFigure4.5,Skinfrictionisrelatedtotheresistanceamovingfluidfacesinthe vicinityofaboundary.Thegraphshowingtheimpactof M ontheskinfrictionprofile elucidatehowthemagneticfieldinfluencesthedragexperiencedbythenanofluid.A higher M isexpectedtoincreasetheskinfrictionduetotheincreasedelectromagnetic forceopposingtheflow.

Figure4.5: ImpactofMonSkinfrictionprofile

Table4.1: Resultsof F (0)and G(0)

Physicalquantities Mebareketal Bvp4cresult

F0 (0)

0.5102 0.4898 G0 (0) 0.6159 0.5797

IntegratingtheResultswiththeGraphicalAnalysis:Thedifferencesinthevalues ofphysicalquantities F0 (0)and G0 (0)betweenthebvp4cresultsandthoseobtained byMebareketal.usingtheRunge-Kuttamethodcanbefurthercontextualizedwith thegraphicalresultsexaminedearlier

VelocityProfile F ′andF ′′:Thebvp4cmethodproducedthevelocityprofilesthat wereobservedinthegraphs.Thelower F0 (0)valuefrombvp4ccomparedtoMebarek

etal.suggestsalesspronouncedvelocityattheboundary,whichcorrelatewiththe graphicaltrendswhereareducedvelocityneartheboundarycouldleadtoasteeper velocitygradient(asindicatedbytheshapeoftheF’curve).

TemperatureandConcentrationProfiles:Thegraphsdepictingthetemperature andconcentrationprofilescouldbeinfluencedbythedifferencein G0 (0)values.A higher G0 (0)frombvp4cindicateasharpertemperatureandconcentrationgradientattheboundary,whichreflectedintheshapesoftheconcentrationprofileand temperatureprofilegraphs,particularlyinregionsclosetotheboundary(near=0).

ImpactofMagneticField(M):TheRunge-Kuttamethod,asusedbyMebarek etal.,andthebvp4cresultsshowvariationsinhowthemagneticfieldimpactsthe flowcharacteristics,suchasskinfrictionandNusseltnumber.Thegraphsinthis workdisplaytheimpactofthesephysicalquantitiesunderdifferentmagneticfield strengths.Thediscrepancyinnumericalvaluesmightbeobservedasdifferentslopes orshiftsinthegraphicalprofileswithchangingMvalues.

InfluenceofBrownianMotionandThermophoresis(NbandNt):Thediscrepancy invaluesalsocarriesimplicationsforthegraphsrelatedtoBrownianmotion(Nb) andthermophoresis(Nt).ThegraphsshowingtheSherwoodnumberandconcentrationprofilesfordifferentNbandNtwouldbeimpactedbythenumericaldifferences, potentiallyshowingvarianceinmassandheattransferrates.

NumericalMethodSensitivity:Thesensitivityofthenumericalmethodstoinitialconditionsandparametervaluesishighlightedbythedifferencesinresults.The Runge-Kuttamethodisverysensitivetostepsizeandmightyielddifferentresults ifthestepsizeisnotappropriatelychosen,whilebvp4c’sadaptivemeshingbetter captureboundarybehaviors,aspossiblyseeninthegraphs.

Figure4.6: ImpactofNbonSherwoodnumberprofile

InFigure4.6,theSherwoodnumber(Sh)isadimensionlessnumberdescribingthe masstransferataboundary.ThegraphshowingtheimpactoftheBrownianmotion parameter(Nb)on Sh wouldhighlighttheroleofBrownianmotioninenhancingthe masstransferrate.As Nb increases,theintensificationofnanoparticlemotionmay increasethemasstransfer,reflectedinthe Sh profile.

Figure4.7depicttheconcentrationprofileofnanoparticleswithinthenanofluid as Nb isvaried.Anincreasein Nb suggestsstrongerBrownianmotion,potentially leadingtoamoreuniformdistributionofnanoparticlesandachangeintheconcentrationboundarylayer.

Figure4.7: ImpactofNbonConcentrationprofile

InFigure4.8, Nt representsthethermophoresisparameter,whichaffectsthedistributionofnanoparticlesduetotemperaturegradients.Thegraphillustratehow changesin Nt impactthetemperatureprofilewithinthenanofluid.Thermophoresis caninfluencethenanoparticledistributioninthethermalboundarylayerandthus thefluid’stemperaturedistribution.

InFigure4.9,Thermophoresisaffectstheconcentrationprofileofnanoparticles. Thefigureshowhowvariationsin Nt affectthedistributionofnanoparticleconcentrationacrosstheboundarylayer.Ahigher Nt couldresultinaconcentrationprofile thatindicatesthemovementofnanoparticlesfromhottertocoolerregions.

Figure4.8: ImpactofNtontemperatureprofile

InFigure4.10,thisfigureshowtherelationshipbetweenthethermophoresisparameterandtheNusseltnumber,givinginsightintohowthermophoresisinfluences theconvectiveheattransferofthenanofluid.Sincethermophoresisaffectsparticle distribution,itdoeshaveasignificanteffectontheheattransfercharacteristics,as indicatedbychangesin Nu

Lastly,Figure4.11theimpactof Nt ontheSherwoodnumberrevealtherelationshipbetweenthermophoreticeffectsandtheconvectivemasstransferrate.A variationin Nt couldpotentiallyalter Sh,indicatingchangesinhowthermophoresis affectsthetransportofmassinthepresenceofatemperaturegradient.

ImpactofNtonConcentrationprofile

ImpactofNtonNusseltnumberprofile

Figure4.9:
Figure4.10:

ImpactofNtonSherwoodnumberprofile

Figure4.11:

Chapter5 CONCLUSION

ThemodifiedBuongiornoschemeinvolvesconvertingthemathematicallymodeled equationsintoafirst-orderODEsschemeusingVonK´arm´an’ssimilarityconversions andthensolvingthemnumericallyusingthebvp4cmethodinMatlab.Themain conclusionsare:

ChangesinthestretchingstrengthtermaredirectlyproportionaltotheNusselt numberandinverselyproportionaltothethermalfield.

Thevolumefractionofmagnetitenanoparticleshasaconstructiveimpacton theheattransferrateandthethermalfield.

Surfacedragincreaseswithanincreasingmagneticfieldparameterandvolume fractionofmagnetitenanoparticles.

HeattransportratedecreaseswiththermophoresisandBrownianmotionparameters.

ThemagneticfieldandtheSchmidtnumbertermsexhibitadestructiveinfluenceandaconstructiveeffectoverthemasstransportrate,respectively.

References

[1]Mebarek-Oudina,FatehPrashar,PreetiaS,SabuVaidya,HanumeshLewis,R Areekara,SujeshMathew,Sr.AlphonsaIsmail,A..(2024).Hydromagneticflow ofmagnetite-waternanofluidutilizingadaptedBuongiornomodel.International JournalofModernPhysicsB.38.2450003.10.1142/S0217979224500036.

[2]B.Mahantheshetal.(2020).J.Therm.Anal.Calorim.141,37.

[3]T.Hayatetal.(2017).Int.J.Numer.MethodsHeatFluidFlow27,221.

[4]A.S.Sabuetal.(2021).Int.Commun.HeatMassTransf.129,105711.

[5]Sheikholeslami,M.;Shehzad,S.(2017)MagnetohydrodynamicnanofluidconvectiveflowinaporousenclosurebymeansofLBM.Int.J.HeatMassTransf.Pg: 113,796–805.

[6]Buongiorno,J.(2006)Convectivetransportinnanofluids.J.HeatTransf.128, 240–250.

[7]TurkyilmazogluM.(2016)Flowofnanofluidplanewalljetandheattransfer.Eur. J.Mech.BFluids;59:18–24.

[8]AliM,SultanF,KhanWA,ShahzadM,ArifH.(2020)Importantfeaturesof expanding/contractingcylinderforCrossmagneto-nanofluidflow.ChaosSoliton Fract;133:109656.

[9]LiF,SheikholeslamiM,DaraRN,AfaryarM,ShafeeA,Nguyen-ThoiT,Li Zh.(2020)Numericalstudyfornanofluidbehaviorinsideastoragefinnedenclosureinvolvingmeltingprocess.J.M.Liq.;297:111939.

[10]RajuCSK,HoqueMM,AnikaNN,MamathaSU,SharmaP.(2017)Natural convectiveheattransferanalysisofMHDunsteadyCarreaunanofluidovera conepackedwithalloynanoparticles.PowderTechnol.;317:408–16.

[11]DurgaprasadP,VarmaSVK,HoqueMohammadMainul,RajuCSK.(2019) CombinedeffectsofBrownianmotionandthermophoresisparametersonthreedimensional(3D)Cassonnanofluidflowacrosstheporouslayersslenderingsheet inasuspensionofgraphenenanoparticles.NNeural.Comput.Appl.;31:6275–86.

[12]RamzanM,ChungaJD,UllahNaeem.(2017)Partialslipeffectintheflowof MHDmicropolarnanofluidflowduetoarotatingdisk:anumericalapproach. ResultsPhys.;7:3557–66.

[13]TliliI,WaqasH,AlmaneeaA,KhanSU,ImranM.2019Activationenergyand secondorderslipinbioconvectionofOldroyd-Bnanofluidoverastretchingcylinder:Aproposedmathematicalmodel.Processes;7(12):914.

[14]FetecaC,VieruD,AzharWA.(2017)Naturalconvectionflowoffractional nanofluidsoveranisothermalverticalplatewiththermalradiation.Appl. Sci.;7:247.

[15]Eringen,A.C.(1966)Theoryofmicropolarfluids.J.Math.Mech.16,1–18.

[16]Lund,L.A.;Omar,Z.;Raza,J.;Khan,I.(2020)Magnetohydrodynamicflowof Cu–Fe3O4/H2Ohybridnanofluidwitheffectofviscousdissipation:Dualsimilaritysolutions.J.Therm.Anal.Calorim.143,915–927.

[17]Devakar,M.;Ramesh,K.;Chouhan,S.;Raje,A.(2017)Fullydevelopedflowof non-Newtonianfluidsinastraightuniformsquareductthroughporousmedium. J.Assoc.ArabUniv.BasicAppl.Sci.23,66–74.

[18]Srinivasacharya,D.;Shafeeurrahman,M.(2017)Hallandionslipeffectson mixedconvectionflowofnanofluidbetweentwoconcentriccylinders.J.Assoc. ArabUniv.BasicAppl.Sci.24,223–231.

[19]Rashidi,M.M.;Dinarvand,S.(2009)Purelyanalyticapproximatesolutionsfor steadythree-dimensionalproblemofcondensationfilmoninclinedrotatingdisk byhomotopyanalysismethod.NonlinearAnal.RealWorldAppl.10,2346–2356.

[20]Khan,W.;Pop,I.(2010)Boundary-layerflowofananofluidpastastretching sheet.Int.J.HeatMassTransf.53,2477–2483.

[21]Ascher,U.M.,Mattheij,R.M.,Russell,R.D.(1995).NumericalSolutionof BoundaryValueProblemsforOrdinaryDifferentialEquations.SIAM.

[22]BorkerandAquino(2019).Fluid–structureinteractionusingbvp4c.MatlabCentralFileExchange.

[23]Liu,G.R.andLiu,M.B.(2003).SmoothedParticleHydrodynamics:AMeshfree ParticleMethod.WorldScientificPubCo.

[24]Polyanin,A.D.andZaitsev,V.F.(2003).HandbookofExactSolutionsforOrdinaryDifferentialEquations.ChapmanHall/CRC.

[25]Russell,R.D.,Shampine,L.F.(1972).Acollocationmethodforboundaryvalue problems.NumerischeMathematik.19,1–28.

[26]Shampine,L.F.,Gladwell,I.,Thompson,S.(2003).SolvingODEswithMATLAB.CambridgeUniversityPress.

[27]M.Mustafaetal.,Int.J.NonlinearSci.Numer.Simul.19,1(2018).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Application of Bv4c in the Analysis of the hydro magnetic flow of magnetite water Nano fluid adapted by Anirejuoritse Paul Iwetan - Issuu