Solutions Manual Microelectronic circuits

Page 1

Full file at https://buklibry.com/download/solutions-manual-microelectronic-circuits-6th-edition-by-sedra-smith/ Download full file from buklibry.com

Oxford University Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education.

Oxford New York

Auckland Cape Town Dares Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto

With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 20 II by Oxford University Press, Inc.

Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 http://www.oup.com

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication m11y be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press.

ISBN: 978-0-19-976570-6

Printing number: 9 8 7 6 S 4 3 2 I

Printed in the United States of America on acid-free paper

Full file at https://buklibry.com/download/solutions-manual-microelectronic-circuits-6th-edition-by-sedra-smith/ Download full file from buklibry.com

Full

Exercise Solutions (Chapters 1 - 16)

Problem Solutions (Chapters 1- 16)

Contents
file
Download full file from buklibry.com
at https://buklibry.com/download/solutions-manual-microelectronic-circuits-6th-edition-by-sedra-smith/

Exercise 1--6

Full file at https://buklibry.com/download/solutions-manual-microelectronic-circuits-6th-edition-by-sedra-smith/

Ex: 1.25

T= 50K

ni ""'· BT;ne ···1Jgl(2K11

""' 7.3 X IOJ\50)JI1 e-1.12112xU2/IIJ-5

9.6 x IO-:l9/cm3

T"'"' 350K

n; ""· BTm e. lit/l!IITI

"" 7.3 X C·-l.la/tl X $.42 X I() • X = 4.15 X 10 11 /cml

Ex: 1.26

N 0 = 10 17/cm 3

From Exercise 3.1 n1 at

T ,.,. 350 K = 4.15 X 1011 /cnl

It, ""' N v """ 10 11/cm 3 ni2 p,a!-N f)

(4.l5 X 10 11 ) 2 1011

"' 1.72 x 106 /cnl

Ex: 1.27

At 300 K, n1 = 1.5 X IOH1/cm 3

Pp = N"

Want electron concentration

I w = TIP "" .5 X lO "' 1.5 X 104 /cm) 106 .2

;. N A = Pp = !!!.. TIP

( 1.5 X 10 10 { 1.5 X 104

1.5 X 1016fcmJ

Ex:l.28

a. u,·driff = Here negative sign indicates that electrons move in a direction oppOSite toE

We use

'-'··drifT '" -!J.-.E

·"-' 1350 X --=---, 2 x Hr·4

•.

4

"" 6.75 X 10 cm/s "'""' 6.75 x 10 mls

b. 1imc tnken to cross 2 J.l.ffi

length '= ::: 30 ps 6.75 X Hf

c. In driff current density Jn in

' qnJt,.E

= L6 X 10" 19 X 1{) 1t, X 1350 X l V 2 x w-·l

1.08 X 104 A!cm2

d. Ddff current 1, = Aqnu,.-dritr

""' Aqn11n£

= 0.25 X 10·-B X 1.08 X 104

"" 27 11A

Note 0.25 11-m 2 = 0.25 x 10· 8 cm2

• _ dn(x)

Sx. 1.29/,. ··· qD,-dx

From Figure E 1 • 2 9

llu = "" I (JJ.m) 3 4 2 >'I\

Dn " 35 <-1n·/s 35 x (10) (f.tmr /s:

= 35 X

dn _ 105 -0 _ ·····

dx- ·-

J , qD dn(x) n • lit

= 1.6 X X 35 X 108 X 105 "" 56 X 10- 6 AI( 11-m )2

= 56 11 A/( 11-m) 2

For 1. = I mA ""1. X A

=-> .4 = I nv\ -· !OJ IJ:A ::::.18

Jn 56 )J.AI(t.l.tn) 2

Ex;l.30

Using equation 1 . 4 5

D. = v,. llo li-p

Dn = Jl,V,. = 1350X25.9X w->

$!; 35 cm 2/s -;!

Dp = )LpVT "' 480 X 25.9 X 10

a.: 12.4 cm2/s

J<;x: 1. 31

Equation 3 . 50

W=

Download full file from buklibry.com
In = 0.25 mA, V 01 • VA"-"50V v _.:! ""· 200 k.H lo (),25 v. R0 "'· Rn ll r 0 :::. RJ> "'" 20 k!l .>ttl "" Gv "" - gm(/?1> !I r11 !I Rl) ::: - g.,(Rn II Rt) 20 V!V for "' (IO'JH 2V 0 v ·"" {)J)5 V. iJo ( Avt'#'l "' l V. Ex: 5.28 Assuming V ·-t x From Ex 5.27 _!_'J:' vfh_, :. N, = 1.5 kH 50 mV ---·-···- => 'i R' 200 mV "' ·· -g.,( Rn !! ···20 4 ' g,.R\ Ex: 5.29 Exercise 5-7 =>g., ·""· 10 mA IV 110 ·•.• 2/ n g,. = - ·--=>lo ''' Vol' 0.2V. Gv , TJv l','\"i,\! ' UJno mA I V)(2 kHl "'+10 Ex: 5.30 rnA CDamputicr 1 100 H =>g., 10 rnA IV 1}(J , Vov 211, => 10 •··• 1.25 mA 0.25V 0.91 v. 91 mV. fJs I +g..,R, IOOH T .. 0.9V A.,,. I RL Ex: .5.31 CD (sou follower! In200!! "' I ·IV ,2 -k,--- \· 1)\ 2 L I tkn I gm = 5 mA IV ,"'>,•tl 0Ji25 mA Full file at https://buklibry.com/download/solutions-manual-microelectronic-circuits-6th-edition-by-sedra-smith/ Download full file from buklibry.com

https://buklibry.com/download/solutions-manual-microelectronic-circuits-6th-edition-by-sedra-smith/

LetR 1 = JQkfl

<k:gaifi=R2 /R 1 = = R2 = lOkfl

liS j6> _, !)0

0;2985we 1 ·· · w coC:R 1

C"" I = 5SnP

0.2895 X 2-tt 104 X: 104

(b)SeOOlld•Order l!ection with transfer (unction:

T(.v} = • . . . .· 2 s· + 0.461J-1w,. + where the numera«>r cQiiflkient was selected io yiclcl a de gilin.ofunity

Ex: t1 21

the KHN circuit in Fig;ll. 24Choosi.ng

C=1nF

R "'·-1-."" 4 1 9 "" 15.9 kfl la),;C l1rl0 X 10

UsingEq.li.62 and selecting R1 ·= 10 kU

R1 = Ri "" lO kO

Using Eq.l1.63 and setting R2 10 Hl

R3 "" R2 (2Q- I) ""' 10(2 x 2- I) = 30 k!l

High .freuency gain = K "" 2 - a"". 1.5 V I V

T!w function to the output ofthe Jirst inte!rarotis

sKI(C!!L_

2 w., 2 s+sQ+w.,

Tims the. centre-frequency gain

"' K J1 ""' KQ lJ/Z 1.5 X 2 '"' 3 VI V CRw., 11.22

Select R 1 ""' R 2 = R 3 "" R5 = 10 kfl

=> C ·"" 1 "" 2.43 nF

J0.4293 X 2nl04 X 104

C4 = C6 = C ,., 2.43nF

Q = ..}i)A2'93w,, = 1.4 => R6 = -'L = 14 kfl 0.4684wP to)0 C

(c) Sccond·Order Section with Transfer-function; '

T(s) "' , 0.988..Jw- 11 + s0.1789w 1 , + 0.9883w 211

The circuit is similar to that in (b) above but with R 1 "' R2 "" R3 ·"' R 5 "" 10 kH

"" 1.6 nF

Q ·""" = 556 O.lr89

Thus Rt. = Q t 111 0 C ""' 55.6 kH

Placing the three sections in cascade, i.e. connecting the output of the first-order section to the input of the second-order section in (b) and the output of of section (b) to the input of (c) results in the I)V.:ralltmnsfcr function in eq. Ill . 2 5

given C "" lnF RL = 10 kH

R _1_ "' I 31.83 kH w.,c 2n5 x x

R 1 "' IOk!l

R2 = 10 k!l ""} RJ "" R 1 (2Q- I)

= 10(10 -· I) '"' 90 kl!

811 w 2 ''" 1,) 2 R11 ·'-" ""· 25.6 k!l

R 1 " n 5

OC gain"" x::. "' (2- b):: '" 3

Rf. '"' 3 X to '" 16.7 kfl 2- 115

Exercise 11-5
Full file at
Download full file from buklibry.com

Full

https://buklibry.com/download/solutions-manual-microelectronic-circuits-6th-edition-by-sedra-smith/

I = (toll4-0.7 20) + 20 "" 0.124 rnA

2.48 v

3.32 DROP MODEL (a) Q)-0.7¥ -CONSTANT
+IOV tf4ll0- lO 'f\:!/-1 - =lOrnA s kn l®-o.7; w = 1.86mA -IOV (b) +IOV 5kfl ti=O lOkll -IOV 102 '" lO- ( -10) - 0.7 15 1.29 mA 3.33 (a) - IO + 1.29(10) + 0.7 "" 36 V
3-12 (b) 3V a> \l±:fJ-0.7 CD -1. 235 + 0.7 = -0.535 v@ 3.34 (a) -3V v "' -3 + 0.353(5) V = -1.235V G) OO!I20)kfl ('20) 6X 1
VOLTAGE
Chapter
v
"' 20/ =
(b)
file at
t:utoff ·: < 2 2 :.I = OA v ""' - "' ·0 '; v 2 2 Download full file from buklibry.com

https://buklibry.com/download/solutions-manual-microelectronic-circuits-6th-edition-by-sedra-smith/

11.8 rrt (dB)

Numemtor is given by

a, (s- i.i)(s1 + ( 10l)2)(i + (3 X

f (6 X 103)2)

""a 1s(l + to")(.t2 + 9 X 106 )(i + 36 x 106 )

Degree of Numerator m "' 7

Pegree of Denominator N

Given that there is one zero at "' :

N-M:::J=t>NzS

:. T(s) * . 1 6 s + b1 s + b6 .• + + b 0

a 1 s{i + 106 )(i + 9 X l06 )(i + 36 X 106 )

From circuit : drawn from V00 rail = 21B

= cmrent rerumen to Vss nul

:.Power= (V 1JD+ Vs 5 )X2111 =t>

I mW = (1.65 + 1.65) X 2 In

.·. / 0 "' 1 mW = 151.5 11-A 4 X 1.65 V

'"'·· 18 ! 1.1 "' 126.3 JLA 11.9

<D

L--"""'--.---o +

V; + Vo

:.V 1(2i + 2s + I) (a) -+(b)

V0 (2.Y3 +2s+1)1 "' V 0 +2sV 1

Eq. (b)

V0 (4.$4 .+ :f1{4 + 4) + .l(2 + 4 + 2) + $(2 + 2) +'I)

=V0 + 2sV1

V0 (s) A 2s

V ( ) ""' T (s) 4 J 1 II 4• + 8s' + 8.f· + 4s

r( ) 0.5 .$ = 2 s +·2s +2s+ I

Poles are given by:

s' + 2sl + 2s + I ·"' 0

(s + I )(i + s + I) = 0

.:. Poles are s = - I nnd s

11.10

A_= I dB, A =20 dB, w/w, "' 1.3

using: A< ...,) = , o log [, t t 1(::f']

The easiest way to solve the circuit is to me nodal at nodes (I), {2), 0)

At nooe C\l 'if c.o 0

Va + V 0 + Vi O

I I! s 2s

:V, = V 0 (2.1 1 + + I) Eq. (a)

At node 12) "il = 0 ()

log(toAm;, 'w-1) = log(r2("'•YN.)

(dp

A flO ) logl(IO '"'" -I) UJ - 21og(• ,l<>>.r)-N = 11.3 N 12

The actual vnlue of stopband altenuation qm be cakulaled using the intt•ger value of N :

A{w,) = JOiog(l + IV= 12 _tv!'. = 27.35 dB actual anenuation

If the stopband specs are to he met exactly we need lo lind A_,.

t'J. 10 I ("'·I,,,,..{'

A,_= 20 N .12 =" OJl\24

l(llng( I + 1· 1 0.73 <JB

Chapter 11-4
Full file at
Download full file from buklibry.com

16.34

Note that the output is high if no word is selected. Thus, logically, high must correspond 10 logic 0 (and no transistor, as noted in the

Correspondingly, the words stored in are 0100,0000. 1000, 1001,0101,0001.01 10, and

16,35

Note lhat a IOta! of 14NMOS and 4PMOS are used.

16.36

(a) Forthe PMOS, with V8 =2.5 V

L 0 = (90/3)10- 6(1211.2)[(5- 1)2.5- 2.5 2 /2)

= JO x w·•oo)[4(2.5l- 2.5' 121

= 2.0625 mA

Thus the average charging is 2.06 mA

Time for precharge 1=CVI/

whence

1 = I X 10- 12 (5 - 0) I (2.06 X 10- 3 ) = 2.42 ns

(b) For the word-line rise.

T = RC = 5 x 10.1 x 2 x 10-" = JO n•

Here, vw = 5( I - -•"">

Thus the rise time (I 0% to 90%) is essentially the time 1 to 90%, where

0.9(5) = 5(1- e-'' 10 )

e·o'IO = O.J

and 1 = -10 ln(O.Il = 23 ns

Chapter 16-10
0010.
Needz=x+y X y z 00 00 ()()()() 00 OJ ()()()() 00 10 ()()()() 00 II ()()()() 01 00 ()()()() 01 OJ 0001 OJ 10 0010 01 II 0011 10 00 ()()()() 10 01 0010 10 10 0100 10 11 OJIO II 00 ()()()() 11 OJ 0011 11 10 OliO 11 11 1001
..... ,,.r ::1 ,,.r ..... ..... ,,r ,,.r ..... ,,.r .... ,,.r ,,.r ,,r ::1 ..... .r ..... ,,.r '4 ..... 0 4 0 3 0 2 0 1
,rl,rl,rl -
+·+
Full file at https://buklibry.com/download/solutions-manual-microelectronic-circuits-6th-edition-by-sedra-smith/ Download full file from buklibry.com
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.