AMT AUG/SEPT 2020

Page 84

082

CONSTRUCTION & INFRASTRUCTURE

Robovoid: Using additive manufacturing to support construction innovation When Victorian start-up Robovoid Pty Ltd needed to develop sophisticated new tooling for its innovative new concrete construction system, it turned to 3D printing – and AMTIL’s Additive Manufacturing Hub – to find a solution. Robovoid Pty Ltd was established in July 2018 by Dr John Stehle and Scott Olding for the specific purpose to research, develop and commercialise Stehle’s Robovoid Invention. The Robovoid Invention is a patent-pending recycled plastic void former for concrete construction applications. The Robovoid Invention has drawn on Stehle’s previous experience developing new and innovative precast construction solutions, an example being the innovative dowel connection system adopted in the flooring system implemented for the Leadenhall Building (aka the “Cheesegrater”) in London. On the back of Stehle’s 25-year career in the construction industry, and with a strong desire by Stehle and Olding to introduce new solutions to the industry that reduce the environmental impact of new construction, the Robovoid Invention commenced its development journey. The Robovoid Invention involves multiple research & development (R&D) components but one of the key areas identified at the beginning of the project was how to make the Robovoid recycled plastic components, or Robovoid Components. Of course, a key criterion in determining how to make the Robovoid Components was the anticipated cost per unit – the production process had to be efficient! It had to be a production process that could produce Robovoid Components in large volumes at a low cost.

The challenge Robovoid’s product design heavily involved the application of DfMA (Design for Manufacturing and Assembly) principles, of which Stehle had extensive experience from the construction industry. In going down the path to research, design and develop an injection moulding tool to produce the Robovoid Components, the Robovoid team met and spoke with many suppliers to the industry about the complexity of its mould design (which continued to evolve), and the ability to achieve a suitable cycle time to make the process as efficient as possible. Two of the reasons for the complexity of Robovoid’s mould design were the complex part geometry itself, and the configuration of the cooling channels within the mould. The design complexity and the observed limitations of traditional toolmaking techniques resulted in Stehle and Olding considering metal 3D printing for some elements of the injection moulding tool. During this phase of the project they met with Amiga Engineering and discussed their mould design with Managing Director Michael Bourchier and his team. At this stage they also met with John Croft, Manager of the Additive Manufacturing Hub (AM Hub) at AMTIL, and to hear about the Hub’s voucher programme to promote and support additive manufacturing. The experience and expertise of the Amiga team coupled with the support of the AM Hub enabled Robovoid to continue exploring the process and benefits of metal 3D printing components of the overall injection moulding tool. “We had to think about things such as: plastic flow (as defined by rheology), thermal shrinkage, support conditions during the 3D build process, how to incorporate cooling channels in the mould, and the part ejection method and mould draw requirements,” says Stehle. Robovoid, its toolmaker Geetha Engineering and the team at Amiga agreed that the moulding tool would utilise H13 tool steel, which is a very tough, high-strength steel. This material is commonly used in injection moulding applications to deal with the high stress and repeat loading environment. However, to the best of the team’s collective knowledge, H13 tool steel had never been used before

AMT AUG/SEP 2020

Dr John Stehle developed the Robovoid Invention.

to 3D print an application this large and complex (approximately 200mm by 200mm by 170mm high). Indeed, Amiga was advised by experts in Germany that it could not be done. This, of course, was the motivation the team needed to get it done!

The solution It goes without saying that 3D printing requires 3D modelling to happen first, which included parametric modelling, and basic mould flow and finite element analysis. Before committing to part geometry and steel mould investment for a prototype mould, the Robovoid team wisely tested its part geometry using 3D printing methods via a selective laser sintering (SLS) method and nylon material. 3D Systems Asia Pacific provided an excellent service with this part of the process (which was also financially supported by the AM Hub voucher). In particular, Robovoid was able to physically test and evaluate multiple versions of the ‘click together connection’ design developed by Stehle.


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

MANUFACTURING HISTORY – A look back in time

5min
pages 120-121

SCHUNK improves efficiency for gear manufacturer

5min
pages 106-107

AMTIL FORUMS

18min
pages 108-111

Kalgoorlie business thrives under pressure

4min
page 100

ADE & Austin deliver revolutionary truck tech to NT mine

7min
pages 101-103

Manufacturing under COVID-19: Overcoming challenges

7min
pages 98-99

Dimac Tooling – Comprehensive workholding

6min
pages 104-105

Lucidworks – Building digital ecosystems

2min
page 97

Carving out a path for India’s economic boom

6min
pages 92-93

ANCA: Time-saving enhancements for offline productivity

4min
page 96

Digitally transforming businesses in the manufacturing sector

6min
pages 94-95

Tornos: Growing up ‘Swiss

5min
pages 90-91

Constructing South-East Asia’s largest 3D printer

4min
pages 88-89

NEPEAN - Strength, service and uncompromising quality

5min
pages 86-87

Robovoid: Using AM to support construction innovation

5min
pages 84-85

QUALITY & INSPECTION

13min
pages 80-82

ONE ON ONE

13min
pages 76-79

MAPAL: Process-reliable face milling with a long tool life

4min
pages 74-75

Guhring additive tool cuts costs for aerospace subcontractor

3min
page 73

Can fabricated metals industry easily transition to onshoring?

4min
pages 68-69

Iscar – Cast-iron LogIQ

8min
pages 70-72

Jmar expands capabilities with new Yawei investment

5min
pages 66-67

COMPANY FOCUS

14min
pages 62-65

Robots in labs: Making healthcare more productive

6min
pages 60-61

Better prototyping: Nidek cuts time-to-market with 3D printing

7min
pages 54-55

3D-printed medical implants

7min
pages 56-57

Howard Wright: Simple, smart, human

5min
pages 58-59

From bomb-detection to virus-detection – World-first

6min
pages 52-53

RAM3D – Bringing additive manufacturing to medical

5min
pages 50-51

Export/import controls on medical equipment for COVID-19

4min
pages 48-49

PRODUCT NEWS

22min
pages 36-43

From the Ministry

3min
pages 14-15

Surging ahead in times of COVID-19

11min
pages 44-47

VOICEBOX

21min
pages 30-35

From the Union

5min
pages 18-19

From the CEO

5min
pages 12-13
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.