OPTIMAL DISTRIBUTED KALMAN FILTER

Page 17

The parallelism speedup with respect to the number of processors required for the implementation of the Distributed Kalman Filter, for time varying system, where n=4 and m=1000, is plotted in Figure 4. 300000

Speedup

250000 200000 150000 100000 50000 0 0

100

200

300

400

500

600

700

800

900

1000

Processors

Distributed Kalman Filter Parallelism Speedup Time Varying system n=4, m=1000 Figure 4 8. CONCLUSIONS Centralized and distributed approaches to the solution of the discrete time estimation/filtering problem for multisensor environment were presented in this paper. The discrete time Centralized and Distributed Kalman Filters were analyzed. It was pointed out that both the discrete time Centralized and Distributed Kalman Filters calculate the same estimates, thus the filters are equivalent with respect to their behavior. The computational requirements of both filters were discussed. It was also proposed a method to a-priori (before the filters' implementation) define the Optimal Distributed Kalman Filter. The method is based on the a-priori determination of the measurements' optimum distribution in parallel processors using the criterion of minimizing the computation time. It was verified through simulation results that the proposed Optimal Distributed Kalman Filter presents high parallelism speedup. This result is very important due to the fact that, in most real-time applications, it is essential to obtain the estimate in the shortest possible time.

17


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.