The History of the American Bureau of Shipping: 150th Anniversary

Page 81

Chapter 5

Leading a Technology Revolution 1965 – 1984

I

n May 1965, President and Chairman Andrew Neilson hosted a classification society conference in the boardroom of ABS’ world headquarters in New York, reaching out to the Bureau’s international counterparts with the desire of setting uniform interpretations and addressing changes in technology and construction techniques. Neilson opened the proceedings with a reference to the rational ship design movement – already making progress through research initiated by ABS and the US Ship Structure Committee – by announcing ABS’ commitment to provide for “a more seaworthy ship.” “This is a goal,” Neilson continued, “which has captured the imagination of all those associated with the sea since the beginning of time, and will, I am sure, capture the thoughts of those generations who follow us.”

In his audience were representatives of the leading class societies: Lloyd’s Register; Det Norske Veritas of Norway; Bureau Veritas of France; Registro Italiano Navale of Italy; Germanischer Lloyd of Germany; and Japan’s Nippon Kaiji Kyokai. The meeting was convened in anticipation of the 1966 International Conference on Load Lines (ILLC) in London, the second major conference held under the authority of the International Maritime Consultative Organization (today’s IMO). It had long been recognized that limits on the draught to which a ship may be loaded make a significant contribution to its safety. A meeting of the world’s maritime powers in 1930 produced the first Load Line Convention, an international treaty establishing those limits and specifying they be expressed as a mark amidships to indicate the allowed freeboard. However, by the early 1960s, technology advances had made those specifications obsolete, to the extent that they were short-changing the cargo carrying capacity of the modern world fleet. The 1966 ILLC determined the freeboard of ships considering subdivision and damage stability calculations, taking into account the potential hazards present in different ocean zones and different

seasons. It also included a technical annex that contained additional safety measures such as doors, freeing ports and hatchways for the watertight integrity of ships’ hulls below the freeboard deck. While the ILLC did not enter into force until 1968, from the moment of its adoption by the IMO Assembly in 1966, the Convention brought important changes to the industry. Foremost among them were new safety standards and the ‘extra cargo capacity’ that most of the world’s fleet gained through freeboard reassignment. In addition, although unforeseen at the time, the ILLC would have a significant impact on the interaction of classification societies. Regulation 1 of the ILLC repeated a request made in the 1930 Convention, to the effect that classification societies should work together on “securing as much uniformity as possible in the application of the standards of strength on which freeboard is based.” The 1966 Convention instructed that, when applying load line requirements, if a vessel complies with the Rules of a classification society, the flag State can presume that it has sufficient strength to be compatible with its requirements. The reasoning is that, because ship strength and stability are intrinsically linked,

Chapter FIVE: LEADING A TECHNOLOGY REVOLUTION • 67


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
The History of the American Bureau of Shipping: 150th Anniversary by American Bureau of Shipping (ABS) - Issuu