Full file at https://testbankuniv.eu/Calculus-Early-Transcendentals-6th-Edition-Edwards-Solutions-Manual
Section 1.1 1 , then: x 1 1 (a) f (−a) = =− ; −a a 1 (b) f (a−1 ) = −1 = a; a √ 1 1 (c) f ( a ) = √ = 1/2 = a−1/2 ; a a
C01S01.001: If f (x) =
(d) f (a2 ) =
1 = a−2 . a2
C01S01.002: If f (x) = x2 + 5, then: (a) f (−a) = (−a)2 + 5 = a2 + 5; (b) f (a−1 ) = (a−1 )2 + 5 = a−2 + 5 = √ √ 2 (c) f ( a ) = ( a ) + 5 = a + 5;
1 1 + 5a2 +5= ; 2 a a2
(d) f (a2 ) = (a2 )2 + 5 = a4 + 5. 1 , then: x2 + 5 1 1 (a) f (−a) = = 2 ; (−a)2 + 5 a +5
C01S01.003: If f (x) =
(b) f (a−1 ) =
1 a2 1 1 · a2 = ; = = (a−1 )2 + 5 a−2 + 5 a−2 · a2 + 5 · a2 1 + 5a2
√ 1 1 (c) f ( a ) = √ 2 = ; a+5 ( a) + 5 (d) f (a2 ) =
1 (a2 )2
+5
=
a4
1 . +5
√ C01S01.004: If f (x) = 1 + x2 + x4 , then: √ (a) f (−a) = 1 + (−a)2 + (−a)4 = 1 + a2 + a4 ; −1
(b) f (a
)=
1+
(a−1 )2
+
(a−1 )4
=
√
1+
a−2
+
a−4
=
√ √ a4 + a2 + 1 a4 + a2 + 1 a4 + a2 + 1 √ = = = ; a4 a2 a4 √ √ 2 √ 4 √ (c) f ( a ) = 1 + ( a ) + ( a ) = 1 + a + a2 ; √ (d) f (a2 ) = 1 + (a2 )2 + (a4 )2 = 1 + a4 + a8 .
(a4 ) · (1 + a−2 + a−4 ) a4
C01S01.005: If g(x) = 3x + 4 and g(a) = 5, then 3a + 4 = 5, so 3a = 1; therefore a = 13 . C01S01.006: If g(x) =
1 and g(a) = 5, then: 2x − 1 1
Full file at https://testbankuniv.eu/Calculus-Early-Transcendentals-6th-Edition-Edwards-Solutions-Manual