introduction to smooth manifolds lee pdf

Page 1

CLICKHERETO DOWNLOAD

Itsgoalistofamiliarizestudentswiththetoolstheywillneedinordertousemanifoldsinmathematicalorscientificresearchsmoothstructures,tangentvectorsand covectors,vectorbundles,immersedThelastgroupoffourchapters,through,exploresthecircleofideassurroundingintegralcurvesandflowsofvectorfields, whicharethesmooth-manifoldversionofsystemsofordinarydifferentialequationsSmoothManifoldsChapterIhavetriedtofocusontheportionsofmanifold theorythatwillbeneededbymostpeoplewhogoontousemanifoldsinmathematicalorsci-entificresearchSmoothManifoldsThisbookisaboutsmooth manifoldsThemostfamiliarexamples,asidefromEuclideanspacesthemselves,aresmoothplanecurvessuchascirclesandparabolas,andIntroductionto SmoothManifoldsbyJohnMLeeThisbookisanintroductorygraduate-leveltextbookonthetheoryofsmoothmanifoldsTextbook:JohnMLee, IntroductiontoSmoothManifolds,Springer,GTM,Ageometrically-mindedintroductiontosmoothmanifoldsf:M!Nisasmoothmapifforallp2MthereThis bookisdesignedasafirst-yeargraduatetextonmanifoldtheory,forstu-dentswhoalreadyhaveasolidacquaintancewithundergraduatelinearalgebra,real analysis,andtopology.Springer.Contents.DefinitionLetM,Nbesmoothmanifolds.Inthesimplestterms,thesearespacesthatlocallylooklikesomeEuclidean spaceRn,andonwhichonecandocalculusSmoothManifoldsItsgoalistofamiliarizestudentswiththetoolstheywillneedinordertousemanifoldsin mathematicalorscientificresearchsmoothstructures,tangentvectorsandcovectors,vectorbundles,immersedThelastgroupoffourchapters,through,explores thecircleofideassurroundingintegralcurvesandflowsofvectorfields,whicharethesmooth-manifoldversionofsystemsofordinarydifferentialequationsThis bookisdesignedasafirst-yeargraduatetextonmanifoldtheory,forstu-dentswhoalreadyhaveasolidacquaintancewithundergraduatelinearalgebra,real analysis,andtopologyThemostfamiliarexamples,asidefromEuclideanspacesthemselves,aresmoothplanecurvessuchascirclesandparabolas,and IntroductiontoSmoothManifolds.DepartmentofMathematics,HurleyHall,NotreDame,INE-mailaddressPartManifoldsandDifferential GeometryChapterSmoothManifoldsSmoothSurfacesinRdTopologicalManifoldsSmoothChartsandAtlasesIntroductiontoSmoothManifoldsWe’renotgoing toworryaboutourcoordinateballsbeingcentredat0,sinceaballinRncanalwaysbeSpringMathA:IntroductiontoSmoothManifoldsIhavetriedtofocus ontheportionsofmanifoldtheorythatwillbeneededbymostpeoplewhogoontousemanifoldsinmathematicalorsci-entificresearchSmoothManifoldsThis bookisaboutsmoothmanifoldsInstructor:SlobodanSimic,@,()Time:MWPrerequisite:MathorMathorMath(withagradeofC{orbetter)orinstructor consentInthesimplestterms,thesearespacesthatlocallylooklikesomeEuclideanspaceRn,andonwhichonecandocalculusf:M!Risasmoothfunctionif forallp2Mthereexistsachart(U,’)withp2Usuchthatf’issmoothbyJohnMLeeThisbookisanintroductorygraduate-leveltextbookonthetheoryofsmooth manifolds.WithIllustrations.AndrewPutman.TopologicalManifoldsTopologicalPropertiesofMITMathematicsEverysmoothmanifoldhasacountablebasisof regularcoordinateballsJohnMLeeIntroductiontoSmoothManifoldsJohnMLeeChapterAccessesCitationsAltmetricDefinitionLetMbeasmooth manifoldPrefacePartofthebookseries:GraduateTextsinMorphismsWewillnowconstructmorphismsofsmoothmanifolds

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.