molécula da substância antagonista, não podendo reagir com as moléculas do agonista. Teriam assim afinidade pelo receptor, mas a sua atividade intrínseca seria nula. Os agonistas parciais funcionam também como antagonistas parciais, pois ocupando parte dos receptores, impedem que se liguem mais proveitosamente com os agonistas fortes.
Compreende-se que o fármaco ligue-se ao receptor R formando um complexo F-R que, em seguida, é ativado (F-R*) pela alteração na sua conformação. O estímulo gerado é definido como sendo proporcional à fração de receptores no estado ativado. Quando o fármaco se desliga, deixa o receptor num estado não receptivo R que, em seguida, volta ao seu estado inicial R. Desse modo, postula-se que a proteína receptora, mesmo na ausência do fármaco, já existe em duas formas, inativada (Ri) e outra em estado ativado (Ra), que permanecem em equilíbrio dinâmico. Um agonista pleno possuirá alta afinidade pelo receptor na conformação Ra e, quando ele se liga, deslocará o equilíbrio, fazendo com que a maioria dos receptores fique nessa conformação (Ra), produzindo o efeito. O antagonista competitivo tem igual afinidade por Ra e Ri, não deslocando o equilíbrio entre elas e consequentemente não tem efeito. Agonista parcial possui maior afinidade por Ra do que Ri, o efeito será menor em relação ao do agonista pleno, mesmo em concentrações de saturação. Por último, o agonista inverso possui afinidade por Ri e produzirá um efeito oposto ao agonista pleno.
Curvas dose-resposta graduadas. Em Farmacologia, é convencional mostrar a curva dose-resposta graduada com a concentração do fármaco em escala logarítmica, onde há correlação linear entre os log das doses (dentro de certos limites) e as intensidades dos efeitos correspondentes (ver Capítulo 2). Quando se compara as curvas log dose-resposta de diversos fármacos, que agem em um mesmo receptor verifica-se que fármacos de mesma atividade intrínseca, mas com afinidades diferentes, dão curvas paralelas. A posição da curva sobre o eixo dos x dará a afinidade do fármaco pelo seu receptor.
A quantificação do sinergismo e antagonismo entre fármacos serão apresentados em Interações Medicamentosas (ver Capítulo 14).
Curvas dose-resposta quantais. As respostas farmacológicas do tipo tudo ou nada são caracterizadas pela presença ou ausência de um efeito ou parâmetro, como por exemplo, convulsão, arritmias e morte. Não é possível estabelecer uma graduação de resposta como foi descrito anteriormente. O efeito quantal pode ser mensurado em termos de expectativa de resposta em um grande número de pacientes ou animais, e representado graficamente em curva de distribuição de frequência de resposta ou resposta cumulativa (%) dos indivíduos que respondem versus log da dose. A curva dose-resposta quantal possibilita frequentemente o cálculo da dose eficaz 50% (DE50), isto é a dose de um fármaco que causa em 50% dos indivíduos um determinado efeito quantal. Em caso de um efeito tóxico, por ex. morte, calcula-se a dose letal 50% (DL50). A relação entre as doses letal e eficaz e define o índice terapêutico (IT) que é usado na avaliação da segurança de um fármaco (ver Capítulo 3). Em síntese, as curvas-dose-resposta quantais são importantes para tomadas de decisões terapêuticas e refletem a variabilidade potencial de responsividade entre os indivíduos.
BIBLIOGRAFIA ARIËNS, E.J. Affinity and intrinsic activity in the theory of competitive inhibition. Problems and theory. Arch. Int. Pharmacodyn., v 99, p.32-49, 1954. BERRIDGE, M.J. Inositol trisphosphate and calcium signalling mechanisms. Biochim. Biophys. Acta, v.1793, p.933940, 2009. BIRNBAUMER, M. Mutations and diseases of G-proteincoupled transmitter receptors. Recept. Signal Transduct, v.15, p.131-160, 1995. CAMPBELL, A.K. Intracellular calcium: its universal role as regulator. Chichester: Wiley, 1983. CHANGEUX, J.P. Allosteric receptors: from electric organ to cognition. Annu. Rev. Pharmacol. Toxicol., v.50, p.1-38, 2010. FREDHOLM, B.B.; HÖKFELT, T.; MILLIGAN, G. Gprotein-coupled receptors: an update. Acta Physiol (Oxf), v.190, p.3-7, 2007. GREENGARD, P. The neurobiology of slow synaptic transmission. Science, v.294, p.1024-1030, 2001. KOROLKOVAS, A. Fundamentos de farmacologia molecular. São Paulo: Edart/Edusp, 1974. LEMMON, M.A.; SCHLESSINGER, J. Cell signaling by receptor tyrosine kinases. Cell, v.141, p.1117-1134, 2010. RANG, H.P. The receptor concept: pharmacology's big idea. Br. J. Pharmacol., v.147, S9-16, 2006. ROSS. E.M. Coordinating speed and amplitude in Gprotein signaling. Curr. Biol., v.18, p.R777-778, 2008. SANTOS-FILHO, O.A.; HOPFINGER, A.J.; CHERKASOV, A.; DE ALENCASTRO, R.B. The receptordependent QSAR paradigm: an overview of the current state of the art. Med. Chem., v.5, p.359-366, 2009. STEINBERG, S.F. Structural basis of protein kinase C isoform function. Physiol. Rev., v.88, p.1341-1378, 2008. TAKAI, Y.; KISHIMOTO, A.; NISHIZUKA, Y. Calcium and phospholipid turnover as transmembrane signaling for protein phosphorylation. In: CHEUNG N.Y (Ed.). Calcium and cell function. New York: Academic Press, 1982, p.386. TALLARIDA, R.J. Interactions between drugs and occupied receptors. Pharmacol. Ther., v.113, p.197-209, 2007. VALLE, J.R. A farmacologia no Brasil. Antecendentes e perspectivas. ( Publicação no.13 da Academia de Ciências de São Paulo). São Paulo: Dag Ltda, 1978.
Eficácia e receptores de reserva. Stephenson (1956) modificou a teoria de Clark introduzindo o conceito de eficácia. Estipulou que a atividade de um agonista seria o produto de sua afinidade pela sua eficácia (e), isto é, S = e⋅ [FR] Ao contrário da atividade intrínseca de Ariëns, a eficácia pode ter qualquer valor acima de zero. Agonistas fortes diferentes podem possuir eficácias diferentes e, portanto, para produzirem o mesmo efeito, ocuparão número diferente de receptores. Assim, se um fármaco tiver uma eficácia muito grande, pode evocar a resposta máxima ocupando apenas parte dos receptores, podendo assim existir receptores de reserva desocupados. Ao contrário, fármacos de pequena eficácia não conseguem produzir a resposta máxima, mesmo quando ocupam todos os receptores. Outras teorias. A interação fármaco-receptor é muito mais dinâmica do que a sugerida por um modelo de receptor rígido. Atualmente, sabe-se que a ligação de pequenas moléculas a biopolímeros pode levar a alteração conformacional nas estruturas terciárias ou quaternárias destes últimos. Acredita-se, pois, que, quando um fármaco se liga, ele induz variações na conformação do receptor, e esse rearranjo já pode constituir em si o estímulo que desencadeia o efeito. Muitos dos modelos propostos podem ser reduzidos, de maneira bastante simplificada, a um modelo de ocupação-ativação (Ariëns, 1979).
13