Transforming Cities with Transit

Page 205

Toward Sustainable Urban Futures    179

and provision of parks and open spaces.12 Examples and normative standards for street widths, intersection designs, site layouts, building densities, landscaping, and the like can ensure that station areas are both functional and attractive. Design shortcomings sometimes deter land development. In Bogota, for example, the siting of BRT stops in the medians of busy thoroughfares coupled with unattractive metal pedestrian bridges for accessing stations has created unattractive station environments. Passage of enabling legislation by higher levels of government is often needed to empower local authorities to introduce such tools. Pilot testing to overcome political and institutional inertia to any efforts to depart from business as usual may also be needed. Rationalizing mainline transit investments and feeder systems. TOD hinges on the presence of high-quality transit services—services that are not only time competitive with private automobiles but are also free from extreme overcrowding, are reasonably on time, and have exceptionally high-quality feeder access. There needs to be some level of compatibility between a BRT system’s design, operations, and the feeder networks that link to stations. All transit users are pedestrians at some level. Experiences in cities like Copenhagen; Curitiba; and Hong Kong SAR, China point to the importance of providing well-integrated, seamless pedestrian connections between surrounding neighborhoods and transit stops. Particularly important are green connectors, which provide perpendicular bikeway and pedway linkages to transit stations and surrounding areas. Among the BRT cases reviewed in this study, Bogota has linked its bikeway (cicloruta) and pedway networks to TransMilenio stations, significantly improving feeder access. In contrast, Ahmedabad aligned its cycle tracks along Janmarg BRT corridors, effectively creating a parallel (and thus potentially substitutable) mobility option rather than a more complementary perpendicular one. Although there is no doubt a financial logic to co-building BRT and cycle-track systems on the same corridor, unless a circulation plan is in place for ensuring that secondary modes efficiently tie into and link with mainline BRT services, there is likely to be a disconnect between core transit services and the distributionfeeder systems that tie into them. The design and operation of the BRT system itself partly defines the importance of integrated feeder connections. In Ahmedabad, the Janmarg BRT operates as a “closed system” (buses on the busway never leave the facility), effectively providing trunkline services that rely on other modes (foot, bicycle, car, two-wheeler, or another bus) for station access. Closed systems require exceptional feeder connections as well as intermodal transfer facilities for handling the logistical needs of connecting modes. The absence of integrated networks of green connectors as well as staging areas for efficient, seamless intermodal transfers suggests a lack of congruence between a closed-system BRT operation and the network of complementary feeder services. An alternate approach, practiced in Guangzhou and Ottawa, is an “open system,” in which some buses function as both mainline carriers


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.