Page 1

Abstract ID: 249114

Depositional Signatures Associated with Late-Stage Transgression and the Mid-Holocene Sea-Level Highstand in Brazil Christopher J. Hein (hein@vims.edu), Duncan M. FitzGerald , J. Thadeu Menezes , Antonio H.d.F. Klein , Marcio B. Albernaz , William J. Cleary 1

2

3

4

5

6

Department of Physical Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, USA; 2Department of Earth and Environment, Boston University, Boston, MA USA; 3 4 5 Laboratory of Geological Oceanography, UNIVALI - CTTMAR, Itajaí, SC, BRAZIL; Department of Geosciences, Federal University of Santa Catarina, Florianópolis, SC, BRAZIL; Tetra Tech, São Paulo, BRAZIL; 6 Center for Marine Science, University of North Carolina at Wilmington, Wilmington, NC, USA 1

B

4

0 5 6 Age (ka B.P.)

Santa Catarina Rio Grande do Sul

2 0

MA PI

PE

TO

3 4 Age (ka B.P.)

2

1

0

RN PB

BA

ES

MS SP

RJ

PR

0

SC RS

Paraíba Coast (Dominguez et al., 1990)

0

o

5o

Elevation (m MSL)

Type C

Type D

Fig. 4. Locations of Holocene highstand deposits along Brazilian coast. Parentheses: reported ages associated with highstand deposits & elevations of highstand deposits. List of references used in compilation given in handout. Highstand deposit types refer to Fig. 5.

City of Navegantes

D

4

4 2 0

6

7

5

4 3 Age (ka B.P.)

2

0

1

Additional Considerations: Deposits fall along continuum → deposits can contain aspects of multiple types Highstand deposit records reflect degree of preservation and depth / breadth of scientific study

2 0 7

6

5

4 3 Age (ka B.P.)

2

1

Cananéia / Iguape, São Paulo (Suguio et al., 1985)

0

Paranguá, Paraná (Angulo & Lessa,1997) Itajaí / Laguna, Santa Catarina (Suguio et al., 1985)

Angra dos Reis / Parati, Rio de Janeiro (Suguio et al., 1985)

Itajaí / Laguna, Santa Catarina (Angulo et al., 1999)

Itacaré / Ilhéus, Bahia (Suguio et al., 1985)

Salvador, Bahia (Suguio et al., 1985) Caeté, Maranhão (Cohen et al., 2005) 10o

Santos, São Paulo (Suguio et al., 1985) Paranguá, Paraná (Suguio et al., 1985)

15o Latitude (deg South)

20o

Itapoá, Santa Catarina (Souza et al., 2001) 25

o

Highstand Deposits Classified By: Sediment Supply - fluvial, shelf sources; reworking of previous sediments; coastal processes Upland Migration Potential (ability of transgressive deposits to migrate landward) - slope of upland, erodibility (bedrock vs. unconsolidated)

30o

Fig. 3. Compilation of the elevation of the mid-Holocene highstand along the Brazilian coast, by latitude (modified & updated from Angulo et al., 2006).

Fig. 5. Classification scheme for mid-Holocene highstand deposits preserved & identified along Brazilian coast. Drawings represent morphologies of coastal systems ~100 years after mid- Holocene highstand, following initiation of RSL fall, forced regression, & shoreline progradation. Four site categories are defined: A) lack depositional evidence of mid-Holocene highstand. B) contain backbarrier paleolagoon and paleo-estuarine deposits. C) contain transgressive ridges or bars. D) contain welded transgressive-regressive barriers with backbarrier deposits and/or complete highstand barrier complexes.

Type C: Transgressive Barrier Ridge / Bar highstand barrier bar / ridge

Type D: Barrier-Island Complex

relict tidal creek washover / lagoon deposits highstand marsh barrier island

Pleistocene upland deposits progradational strandplain

Type A: Exposed Bedrock Coast waves crash along bedrock shore

48o W

low-profile ridge (landward-most regressive strandplain beach ridge) progradational strandplain

Pleistocene upland deposits

horizontally-bedded reworked shoreface deposits

100 m

Lowland (paleolagoon?)

E

NVA5

Pleistocene Upland

50 m

25

NVA6

NVV6

NVV12

Digital Terrain Model Vertical Scale 2.8

Modern Elevation (m)

5.2

r rrie

m

Ba

Pleistocene Upland m 0 8 ge d i R

ive s s re lain g e R ndp Stra

Ridge Gap (paleo-inlet?)

Explanation Ground-penetrating radar (GPR) profile

Auger core

Vibracore

Wash boring core

Fig. 6. A) Overview map of Navegantes, showing location of Sites 1-3 (B, C, & D, respectively) studied for evidence of highstand features. E) Digital terrain model of barrier-ridge topography at Site #3. Topographic data derived from interpolation of ~8200 RTK-GPS data points.

3 types of highstand features found at Navegantes: Site #1: no highstand deposits (Type A); waves crashing along exposed bedrock at highstand Site #2: barrier ridge (TYPE C) pinned to bedrock platform at highstand; resistant bedrock prevented upland migration Site #3: Pleistocene upland eroded by waves during transgression; segmented highstand barrier island (TYPE D) with washover unit overlies thin transgressive lagoon (dated: 6.7 ka)

NVA13

4 2

Strandplain

msl -2

Bedrock 0

30 Landward (West)

90 Distance (m)

60

120

150 Seaward (East)

C

B Site #2: Highstand Type C (Transgressive Barrier Bar) 6

4 2

-2

0

100 Landward (West)

200 Distance (m)

6 4 2

4 2

0

?

100 Landward (West)

silt

fine sand medium sand

6 4

?

?

200 Distance (m)

coarse sand shell-rich sand

organics heavy-mineralrich sand

bedrock modern MSL

radargram reflection traces

100 Distance (m)

50

Modern Soil

NVV07

2 Pleistocene Upland

45200 ± 1200 uncal yr BP

Barrier Ridge

Transgressive Lagoon: 6756 ± 41 cal yr BP

150 Seaward (South) NVV09

Landward (North)

50

100 Distance (m)

Holocene Evolution of Brazilian Coast Controlled by RSL Change: Early Holocene (> 7 ka): transgression erodes Pleistocene uplands & ancient (~120 ka) regressive shorelines Mid-Holocene (7–5 ka): SL highstand & deposition of transgressive lagoons & backbarrier deposits, transgressive bars, & barrier complexes Late Holocene (5–1 ka): coast largely smoothed by deposition of broad strandplains during forced regression Brazilian Holocene Highstand Deposits: Three end members of deposits: Backbarrier Deposits, Transgressive Barrier Ridge / Bar, & Barrier Island Complexes Deposits nonexistent: Exposed Bedrock Coast at highstand Many sites contain >1 type; features often possess characteristics of >1 type Highstand features reflect relative sediment supply (fluvial, offshore, in situ reworking) and UMP (controlled by antecedent topography, wave energy) at given site during mid Holocene Implications for Coastal Response to Accelerated SL Rise & Transgression: SLR acceleration to up to 16 mm/yr by 2100 (Church et al., 2013) Coastal response will be non-linear: Threshold SLR rate for barrier stability at mid-Holocene in Brazil: 2.0 mm/yr Barriers rapidly migrate during early Holocene when SLR at 2–2.5 mm/yr Barriers only stabilize once SLR decelerates to <1.5–2.0 mm/yr (5–6 ka) Coastal response will be non-uniform: Site specificity of conditions associated with the formation of each highstand deposit type in Brazil Great diversity (three highstand deposit types) identified even within a single small embayment (Navegantes)

Strandplain NVV08

45500 ± 870 uncal yr BP

-2 0

300 Seaward (East)

Landward (North)

NVA08

msl

Bedrock 0

-2

300 Seaward (East)

Upland Aeolian Sand Highstand Ridge Strandplain NVV14 NVV13 NVV15 NVA11 NVV11 NVV10 Modern Soil NVA12 NVV12

6

-2

Site #3: Highstand Type D (Barrier Island Complex)

msl

clay

Low Slope

GPR Transect (Fig. 7c)

N

Developed Property

Explanation

NOT TO SCALE

N

GPR Transect (Fig. 7b)

NVV8

Modern Soil / Road Fill

NVV16

transgressive peat / lagoonal deposits

Upland Migration Potential (UMP)

NVA7

Site #1: Highstand Type A (Exposed Bedrock Coast)

A

msl

bedrock

High Slope

Santa Catarina Island

NVA12

Results: 3 Types of Highstand Deposits at Navegantes

transgressive peat / progradational lagoonal deposits strandplain

Type B: Backbarrier Deposits

NVA13

NVV9

msl

bedrock / Pleistocene upland deposits

NVA11

100 m

Topographic NVV7 Ridge

27 S

Florianopolis

GPR Transect (Fig. 7a)

NVA8

o

4. Classification of Highstand Deposits

C

RTK GPS Region (Fig. 6d)

Area of Detail (Navegantes)

Bedrock

N

NVV15 NVV14

Site #2

D

São Francisco do Sul River

Bedrock Headlands

N

100 m

26o S

Itajaí River

River / Anthropogenic Modified City of Itajaí 26o 55’ S

NVV16

20 km

Santa Catarina State

C

NVV11 NVV13 NVV10

3 km

lines

Site #3

NVA14

Bedrock Headland

Sediment cores Paraná State Strand

48 40’ W

6 5

0

Tramandaí (5.4-7.4 ka; ~4 m)

Type B

Navegantes Holocene Strandplain

Extent of exposed bedrock

Elevation (m MSL)

MG

4 3 Marajó, Pará (Mörner, 1999) 2 1

Curumin (3.3-7.2 ka)

Type A

Site 2

B

N GPR Profiles

o

Paranguá, Paraná (Angulo & Suguio,1995)

This presentation is associated with the published manuscript: Hein, C.J., FitzGerald, D.M., Cleary, W.J., Klein, A.H.F., de Menezes, J.T., Albernaz, M.B., 2014. Coastal response to late-stage transgression and sea-level highstand. Geological Society of America Bulletin, v. 126, no. 3/4, p. 459-480.

Southern Santa Catarina Coastal Plain (5-7 ka; >2 m)

Central Rio Grande do Sul Coastal Plain (4-5 m)

Fig. 2. Holocene sea-level curves. Modified from: (A) Cohen et al., 2005; SouzaFilho et al., 2006, 2009; (B) Caldas et al., 2006; (C) & (D) Angulo et al., 2006.

Associated Manuscript

Explanation: Highstand Deposit Types

Pinheira Strandplain (>5.6 ka; >3 m)

Site 1

SE

GO

Rio Grande do Norte Coast (Bezerra et al., 2003)

Navegantes Strandplain (6.6-6.9 ka; 3.5-4.5 m) Tijucas Strandplain (5.9-6.1 ka; 4.5-5.0 m)

Cidreira (7.3 ka; >2 m)

500 km

Fig. 1. Caravelas Strandplain, Bahia, Brazil (image: NASA Visible Earth)

Cabo São Tomé (5.0-6.0 ka; 5.5 m) Itaipuaçu / Maricá Strandplain (6.5-7.2 ka) Jacarepaguá Coastal Plain (5.7-6.2 ka) Cananéia-Iguape / Ilha Comprida (5.0-6.2 ka; 2.6-4.1 m) Paranaguá / Superagui / Pecas / Guaratuba (4.2-6.4 ka; 3.5-5.0 m) Itapoá Coastal Plain (5.4-6.6 ka; >2 m)

26o 50’ S Bedrock

AL

N

30o S

Paraíba do Sul River Coastal Plain (4 m)

Jardim do Éden (6.5-6.8 ka; >2 m)

CE

0

5

Doce River Coastal Plain (5.1-7.6 ka; 4 m)

48o 35’ W

Pleistocene / Upland

Site 3

Elevation (m MSL)

PA

6

Caravelas Strandplain (5.1-6.8 ka; ~2.5 m)

48o 40’ W

Site #1

Elevation (m MSL)

Paraná

A

7

20 S

São Paulo

São Francisco River Coastal Plain (5.3-5.9 ka; ~4 m) Sergipe Strandplain (no published elevation or chronologic data)

A

Elevation (m MSL)

2

Eq.

o

1000 km

Alagoas Coastal Plain (5.2-6.5 ka; 0.1-1.5 m)

Jequitinhonha River Plain (6.1-7.9 ka; 4 m)

Espirito Santo Rio de Janeiro

Nature of Deposits: Fronted by regressive strandplains or progradational barrier deposits Backbarrier deposits: tidal flats, channels, & deltas, lagoonal sediments, marsh, subtidal & intertidal shoals Barrier deposits: beach, dunes, spits, washover, etc. Shoreface deposits: subtidal & intertidal bars / shoals

Candeías Strandplain (4.9-6.4 ka; 0.5-2.5 m)

Study Site & Data Collection

Navegantes Overview Map

Elevation (m MSL)

AP

10o S

Area of Detail

Bahia

Recife Strandplain (5.6-6.2 ka; 0-2 m)

Sediment Supply

• Late-Holocene SL fall in S. Hemisphere: ° In presence of abundant sediment supplies, RSL fall along Brazilian coast resulted in formation of extensive strandplains & progradational barriers seaward of highstand shorelines (Fig. 1). ° Ideal location to investigate late-stage transgressive & highstand deposits formed in SLR regime similar to today & in coming century

10o N

Piauí Ceará Rio Grande do Norte Paraíba Pernambuco Alagoas Sergipe

40 W

Elevation (m MSL)

• Transgressions → erosional: ° Due to RSL rise and/or net local erosion ° Low preservation potential of deposits ° Deposits associated with post-glacial transgression in Northern Hemisphere removed by SLR during late Holocene

50 W

60 W

São Bento-Caiçara do Norte (6.7-7.1 ka; 1.6 m)

Maranhão

Brazil

N

Summary of Deposits: 28 sites along Brazilian coast Elevations: 0 to > 5 m above modern mean SL Ages: ~4-7 ka

Marajó Island (6.1–6.3 ka) Bragança Peninsula (5.9 ka; +1.4 to -1.5 m) Açu River Mouth (5.9-7.1 ka; 1-2 m)

Pará

o

o

o

Elevation (m MSL)

Approach:

Amapá

SL Changes Allow Preservation of Deposits: • Forced regression during RSL fall → accumulation of strandplains & progradational barriers seaward of highstand deposits • Preservation of late-stage transgressive (7.7–6.0 ka) & highstand (5.5–6.0 ka) deposits landward of modern shoreline

Elevation (m MSL)

Importance of Sedimentologic Records of Past Sea-Level Changes: • Understanding coastal response to change in rate of sea-level rise (SLR) crucial to predicting response to modern accelerated SLR. • Coastal features associated with past transgressions (landward translation of shoreline) & relative-sea-level (RSL) highstands provide insight into rates & nature of coastal response to RSL change.

Holocene Sea-Level Trends Along Brazilian Coast: • Changes driven by inter-hemispheric glacio-hydroisostatic forcing • Early Holocene: SLR @ 2–2.5 mm/yr • SL reaches modern levels at 6.9–7.7 ka & continues to rise • Middle Holocene (5.5–6.0 ka): RSL highstand @ 1–4 m above modern mean SL • Late Holocene: RSL fall; reaches modern elevations < 1000 yrs. ago • Trends consistent across coast (Figs. 2, 2), except in NE Brazil (proximal to Amazon River) where existence of highstand in debate

6. Conclusions & Implications

5. Example Site: Navegantes Strandplain, Santa Catarina

3. Mid-Holocene Highstand Deposits

2. Holocene Sea-Level Change

Elevation (m MSL)

1. Motivation: Coastal Response to Transgression & Highstand

150 Seaward (South)

Fig. 7. Processed (above) & interpreted (below) ground-penetrating radar (GPR) radargrams from Navegantes sites 1-3 (see Fig. 6 for locations). GPR profiles representative of signatures of 3 types of highstand deposits found along Brazilian coast. Graphic core logs from auger cores (NVA-xx), vibracores (NVV-xx), & wash-boring cores. msl - mean sea level; m MSL - meters above mean sea level

7. Acknowledgments Partial funding provided by the donors of the American Chemical Society Petroleum Research Fund. Additional funding provided by FAPESC / Prof. Number 16247/2007-7, CNPQ Proc. Number 575008/2008-3. A.H.F. Klein thanks CNPQ for the Research Fellow PQ-2, Proc. Numb.300153/ 2009-0. We also thank CTTMAR / PROPEC / UNIVALI for institutional support and the following individuals for assistance with field data collection: M. Berribilli, T. Scolaro, D. Neto, G. Silva, C. Brandl, & R. Sangoi. B. Schwartz (Boston University) provided assistance with laboratory data analysis.

8. References

Andrade, A.C.S., Dominguez, J.M.L., 2002. Holocene barrier island-lagoon system at Caravelas strandplain, Bahia, Brazil. J. Coast. Res. SI 42, 164-173. Andrade, A.C.S., et al., 2003. Quaternary evolution of the Caravelas strandplain – Southern Bahia State – Brazil. Ann. Braz. Acad. Sci. 75 (3), 357-382. Angulo, R.J., Lessa, G.C., 1997. The Brazilian sea level curves: A Critical Review with emphasis on the curves from Paranagua and Cananeia regions. Mar. Geol. 140, 141-166. Angulo, R.J., et al., 2006. A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quat. Sci. Rev. 25 (5-6), 486-506. Araújo, A.G.M., et al., 2003. Eventos de seca no Holoceno e suas implicações no povoamento pré-histórico do Brasil Central: IX Congresso da Associação Brasileira de Estudos do Quaternário (ABE-QUA): Recife, Pernambuco, Brazil, p. 4. Barbosa, L.M., et al., 1986. The Quaternary coastal deposits of the state of Alagoas: influence of the relative sea-level changes. Quat. S. Amer. Antarct. Penin. 4, 269–290. Bastos, A.C., Silva, C.G., 2000. Caracterização morfodinâmica do litoral Norte-Fluminense, RJ, Brasil. Rev. Braz. Ocean. 48, 41–60. Behling, H., et al., 2001. Studies on Holocene mangrove ecosystem dynamics of the Bragança Peninsula in north-eastern Pará, Brazil. Palaeogeog. Palaeoclim. Palaeoecol. 167, 225–242. Bittencourt, A.C.S.P., et al., 1979. The marine Quaternary formations of the coast of the state of Bahia (Brazil). In: Suguío, K., Fairchild, T., Martin, L., and Flexor, J.M. (Eds.), Proceedings of the 1978 International Symposium on Coastal Evolution in the Quaternary: São Paulo, Brazil, 232-253. Bittencourt, A.C.S.P., et al., 1983. Evolução paleogeográfica quaternária da costa do Estado de Sergipe e costa sul do Estado de Alagoas. Revista Brasil. Geoci. 13, 93-97. Caldas, L.H., et al., 2006. Holocene sea-level history: evidence from coastal sediments of the Rio Grande do Norte coast, NE Brazil. Mar. Geol. 228, 39–53. Castro, D.F., et al., 2010. Facies, δ13C, δ15N and C/N analyses in a late Quatern. compound estuarine fill, northern Brazil and relation to sea level. Mar. Geo. 274, 135-150. Church, J. A., et al., 2013: Sea Level Change. In: Stocker et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge. Cohen, M.C.L., et al., 2005. A model of Holocene mangrove development and relative sea-level changes on the Braganca Peninsula (Northern Brazil). Wetlands Ecology Management 13, 433–443. Dias, T.M., Kjerfve, B., 2009. Barrier and Beach Ridge Systems of the Rio de Janeiro Coast. In: Dillenburg, S., Hesp, P., (Eds.), Geology and Geomorphology of Holocene Coastal Barriers of Brazil, Springer, Berlin, pp. 225-252. Dillenburg, S., et al., 2000. Influence of antecedent topography on coastal evolution as tested by the Shoreface Translation-Barrier Model. J. Coast. Res. 16 (1), 71-81. Dillenburg, S.R., et al., 2004. Barrier evolution and placer formation at Bujuru southern Brazil. Mar. Geol. 203 (1-2), 43-56. Dillenburg, S.R., et al., 2006. Stratigraphy and evolution of a prograded, transgressive dunefield barrier in southern Brazil. J. Coast. Res. SI 39 (1), 132-135. Dillenburg, S.R., et al., 2009. The Holocene Coastal Barriers of Rio Grande do Sul. In: Dillenburg, S., Hesp, P. (Eds.), Geology and Geomorphology of Holocene Coastal Barriers of Brazil, Springer, Berlin, pp. 53-92. Dominguez, J.M.L., et al., 1981. Esquema evolutivo da sedimentação quaternária nas feições deltáicas dos rios São Francisco (SE/AL), Jequitinhonha (BA), Doce (ES) e Paraíba do Sul (RJ). Revis. Brasil. Geociên. 11, 227–237. Dominguez, J.M.L., et al., 1987. Sea-level History and Quaternary Evolution of River Mouth - Associated Beach-ridge plains along the East-Southeast Brazilian Coast: A Summary. In: Nummedal, D., Pilkey, O.H., Howard, J.D. (Eds.), Sea-level fluctuation and coastal evolution, Spec. Publ. Soc. Econ. Paleontol. Mineral. 41, 115-127. Dominguez, J.M.L., et al., 1990. Geologia do Quaternário costeiro do Estado de Pernambuco. Revis. Brasil. Geociên. 20, 208–215. Dominguez, J.M.L., et al., 1992. Controls on Quaternary Coastal Evolution of the East-Northeastern Coast of Brazil - Roles of Sea-Level History, Trade Winds and Climate. Sediment. Geol. 80 (3-4), 213-232. FitzGerald, D.M., et al., 2007. Strandplain Evolution along the Southern Coast of Santa Catarina, Brazil. J. Coast. Res. SI 50, 152-156. Gandolfo, O.C.B., et al., 2001. Estratigrafia da Ilha Comprida (SP): um exemplo de aplicação de GPR. Brazilian J. Geophysics 19 (3), 251–262. Giannini, P.C.F., et al., 2009. Sedimentology and morphological evolution of the Ilha Comprida barrier system, southern São Paulo coast. In: Dillenburg, S., Hesp, P. (Eds.), Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Springer, Berlin, pp. 177-224. Hein, C.J., et al., 2013. Evidence for a transgressive barrier within a regressive strandplain system: Implications for complex coastal response to environmental change. Sedimentol. 60, 469-502. Hein, C.J., et al., 2014. Coastal response to late-stage transgression and sea-level highstand. Geological Society of America Bulletin 126, 459-480. Hesp, P., et al., 2005. Beach ridges, foredunes or transgressive dunefields? Definitions and initiation, and an examination of the Torres to Tramandai barrier system, southern Brazil. Ann. Braz. Acad. Sci. 77(3), 493-508. Hesp, P., et al., 2007. Regional wind fields and dunefield migration, southern Brazil. Earth Surf. Proc. Land. 32(4), 561-573. Hesp, P.A., et al., 2009. The Holocene Barrier Systems of the Santa Catarina Coast, Southern Brazil. In: Dillenburg, S., Hesp, P. (Eds.), Geology and Geomorphology of Holocene Coastal Barriers of Brazil, Springer, Berlin pp. 94-133. Lessa, G.C., Angulo, R.J., 1995. A framework for the stratigraphy and evolution of the Paranagua coastal plain – Parana, Brazil. In: II Congresso da Associc¸a˜o Brasileira para Estudosdo Quaterna´rio (ABEQUA), Nitero´i, Brazil, pp. 92–98. Lessa, G.C., et al., 1998. Holocene stratigraphy in the Paranagua Bay estuary, southern Brazil. J. Sed. Res. 68 (6), 1060-1076. Lessa, G.C., et al., 2000. Stratigraphy and Holocene evolution of a regressive barrier in south Brazil. Mar. Geol. 165 (1-4), 87-108. Martin, L., Suguío, K., 1976. O Quaternário marinho do litoral do Estado de São Paulo. Annals of the 29th Congresso Brasileiro de Geologia, Belo Horizonte, 1, 281–294. Martin, L., Suguío, K., 1978. Ilha Comprida: um exemplo de ilha barreira ligada às flutuações do nível marinho durante o Quaternário. Annals of the Congresso Brasileiro de Geologia, Recife 2, 905–912. Martin, L., Suguío, K., 1992. Variation of coastal dynamics during the last 7000 years recorded in beach-ridge plains associated with river mouths: example from the Brazilian coast. Palaeogeog. Palaeoclim. Palaeoecol. 99, 119-140. Martin, L., Dominguez, J.M.L., 1994. Geological history of coastal lagoons. In: Kjerfve, B. (Ed.), Coastal Lagoon Processes, Elsevier Ocean. Series, New York, 60, 41-68. Rossetii, D.F., et al., 2008. Palaeodrainage on Marajó Island, northern Brazil, in relation to Holocene relative sea-level dynamics. The Holocene 18, 923-934. Silva, C.G., 1987. Estudo da evolução geológica e geomorfológica da região da Lagoa Feia, RJ. MSc. dissertation, Universidade Federal do Rio de Janeiro. Souza-Filho, et al., 2006. Holocene coastal evolution and facies model of the Bragança macrotidal flat on the Amazon Mangrove Coast, Northern Brazil. J. Coast. Res. SI 39, 306–310. Souza-Filho, P.W.M., et al., 2009. The subsiding macrotidal barrier estuarine system of the Eastern Amazon coast, northern Brazil. In: Dillenburg, S., Hesp, P. (Eds.), Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Springer, Berlin, pp. 347-375. Toldo Jr., E.E., et al., 2000. Holocene sedimentation in Lagoa dos Patos Lagoon, Rio Grande do Sul, Brazil. J. Coast. Res. 16, 816-822. Tomazelli, L.J., et al., 1998. Significance of present-day coastal erosion and marine transgression, Rio Grande do Sul, southern Brazil. Ann. Braz. Acad. Sci. 70, 221-229. Travessas, F.A., et al., 2005. Estratigrafia e evolução da barreira holocênica do Rio Grande do Sul no trecho Tramandaí-Cidreira. Bol. Paranaen. Geoc. 57, 57–73. Turcq, B., et al., 1999. Origin and evolution of the quaternary coastal plain between Guaratiba and Cabo Frio, State of Rio de Janeiro, Brasil. In: Knoppers, B., Bidone, E.D., Abrão, J.J. (Eds.), Environmental Geochemistry of Coastal Lagoon systems of Rio de Janeiro, Brazil. Série Geoquímica Ambiental, 6, pp. 25–46. Villwock, J.A., 1984. Geology of the coastal province of Rio Grande do Sul, southern Brazil: A synthesis. Pesquisas 16, 5–49. Villwock, J.A., Tomazelli, L.J., 1989. Sea-level changes and Holocene evolution in the Rio Grande do Sul coastal plain, Brazil. In: International Symposium on Global Changes in South America During the Quaternary: Past-Present-Future. São Paulo, Brazil, 192-196. Villwock, J.A., et al., 1986. Geology of the Rio Grande do Sul coastal province. In: Rabassa, J., (Ed.), International Symposium on Sea-Level Changes & Quaternary Shorelines. Quat. S. Amer. and Antarctica Peninsula 4, pp. 79-97. Vital, H., 2009. The mesotidal barriers of Rio Grande do Norte. In: Dillenburg, S., Hesp, P. (Eds.), Geology and Geomorphology of Holocene Coastal Barriers of Brazil. Springer, Berlin, pp. 289-324.

Brazil Highstand GSA Poster 2014  
Brazil Highstand GSA Poster 2014  

Poster from the 2014 annual meeting of the Geological Society of America. Based on work published in GSA Bulletin in January 2014 (http://gs...

Advertisement