Re:action Summer 2020 (AV)

Page 20

Feature

GOING NUCLEAR Nuclear medicine is a vitally important tool for diagnostic medicine, and it is benefitting from a collaboration between the University, Southampton General Hospital and a locally based radiation detection business. Nuclear medicine is a specialised area of radiology that uses very small amounts of radioactive materials, or radiopharmaceuticals, to examine organ function and structure using imagery from sensitive gamma ray detectors. Dr Matthew Guy, a specialist in medical physics at the hospital, along with Professor Tony Bird, from Physics and Astronomy, have been working closely with University spin-out company Symetrica to develop the next generation in gamma ray imaging in order to improve the effectiveness of nuclear medicine. Matthew explained: “Nuclear medicine offers unparalleled insights into the function of biological systems in the body – it is used widely to assess how internal organs are working and to monitor the spread of disease. By injecting a small amount of radioactive tracer into the body, usually using a pharmacological component to carry it to the intended target, imaging picks up these gamma ray emissions from inside the body. “We currently use very sensitive gamma ray detectors which rely on a lead collimator to act as the ‘lens’ in the imaging system. Unfortunately, that means most of the emissions coming from the body are lost before they hit our detector – they are absorbed by the lead. Nuclear medicine imaging is, therefore, always a balance between keeping the radiation dose at a reasonable level for the patient, not making the scan uncomfortably long and recording enough counts to limit noise in the image and obtain a diagnostic image.

20


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Re:action Summer 2020 (AV) by University of Southampton - Issuu