Cajas y bigotes (Box-plot) Un diagrama de cajas y bigote (conocido también como Box and whisker plot en inglés), es una representación gráfica de los datos que permite determinar con mucha facilidad y de una manera visual la tendencia central, la variabilidad, la asimetría y la existencia de valores anómalos de un conjunto de observaciones (outliers). De alguna manera, se puede decir que es uno de los gráficos que más y mejor resumen los conjuntos de datos. El diagrama de cajas emplea el resumen de los 5 números: la menor observación, la mayor observación, el primer cuartil, la mediana y el tercer cuartil. Medidas de concentración Estudian el grado de concentración de una magnitud, normalmente económica, en determinados individuos. En cierto modo es un término opuesto a la equidad en el reparto. Se denomina concentración al grado de equidad en el reparto de la suma total de los valores de la variable considerada (renta, salarios, etc.). Las infinitas posibilidades que pueden adoptar los valores se encuentran entre los dos extremos: Concentración máxima, cuando un solo individuo percibe el total y los demás nada; en este caso, se está ante un reparto no equitativo: el que recibe x1 = el que recibe x 2 = ....... = el que recibe x k−1 = 0 y el que recibe x k = el total Concentración mínima, cuando el conjunto total de valores de la variable esta repartido por igual, en este caso se está ante un reparto equitativo: el que recibe x1 = el que recibe x 2 = ....... = el que recibe x k−1 = el que recibe x k Hay diferentes medidas de concentración, pero en el texto se va a estudiar el índice de Gini; por ser un coeficiente, será un valor numérico. Para obtenerlo es necesario realizar un conjunto de cálculos. Se supone que hay una distribución de rentas ( xi · ni) donde i toma los valores de 1 hasta k (por ejemplo, xi son los sueldos y n el número de personas que cobran ese sueldo) de la que se formará una tabla con las columnas siguientes: 1) Los productos xi · ni indicarán la renta total percibida por los ni rentistas de renta individual xi . 2) Las frecuencias absolutas acumuladas N i . 3) Los totales acumulados ui que se calculan de la siguiente forma:
P. Juan Verdoy / M. J. Beltrán / M. J. Peris - ISBN: 978-84-15444-38-1
27
Problemas resueltos de estadística aplicada a las ciencias sociales - UJI - DOI: http://dx.doi.org/10.6035/Sapientia100