Problemas resueltos de estadística aplicada a las ciencias sociales

Page 28

Curtosis Para estudiar el grado de curtosis de una distribución hay que tomar un modelo teórico como referencia, la representación gráfica tenga forma de campana simétrica. No es extraño pues, que se tome el modelo normal, ya que, como ya se ha mencionado con anterioridad, se puede decir que es el modelo campaniforme por antonomasia. De esta manera, tomando este modelo como referencia, se dice que una distribución es leptocúrtica si es más apuntada que la distribución normal. Si es menos apuntada se le llama platicúrtica. Finalmente, si tiene el mismo apuntamiento que una distribución normal se le llama mesocúrtica. Del mismo modo que en el caso del estudio de la asimetría, hay un coeficiente que permite clasificar los datos según la curtosis. En este caso, el coeficiente no es tan intuitivo, por lo que únicamente se dará la definición y su interpetación. Como en el caso de la otra medida de forma, este indicador tampoco tiene dimensión. k

∑(x − X) n g2 =

i=1

i

4

i

n −3 2 ⎞ ⎛ k ⎜ ∑ (xi − X)2 ni ⎟ ⎟ ⎜ i=1 ⎟ ⎜ n ⎟ ⎜ ⎠ ⎝

La idea del apuntamiento de una distribución de datos sale de la comparación de la frecuencia de los valores centrales de una distribución con la frecuencia de los valores centrales en un modelo teórico normal que tenga la misma media y la misma desviación típica que la distribución que se está estudiando. k

∑(x − X) n i=1

Como en un modelo normal se cumple que

4

i

n s4

i

= 3, entonces:

Una distribución será: si g 2 = 0

mesocúrtica (normal)

leptocúrtica si g 2 > 0 platicúrtica si g 2 < 0 Por último, debemos remarcar que el estudio de la curtosis no implica necesariamente que las distribuciones sean simétricas. Así, por ejemplo, nos podríamos encontrar distribuciones de observaciones que sean leptocúrticas y, al mismo tiempo, asimétricas positivas.

P. Juan Verdoy / M. J. Beltrán / M. J. Peris - ISBN: 978-84-15444-38-1

26

Problemas resueltos de estadística aplicada a las ciencias sociales - UJI - DOI: http://dx.doi.org/10.6035/Sapientia100


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.