Sustituyendo: SXY 45 ·(x − X) g y −100 = ·(x −14) g aislando la variable y mediante ma2 4 SX temáticas elementales, obtenemos: Y = 11,25 X – 57,5. y −Y =
Es decir: La facturación = 11,25 · Número de trabajadores – 57,5. a) En función de este ajuste calcula de forma aproximada la cantidad que se espera que facture una empresa con 15 trabajadores. ¿Es fiable esta predicción? Razona la respuesta. Para hacer la predicción únicamente hay que sustituir X por 15, ya que de esta manera obtendremos la estimación de la facturación para una empresa que tuviera 15 trabajadores. Así pues: La facturación = 11,25 · 15 – 57,5 = 111,25 millones. Para calcular la fiablilidad hay que emplear el coeficiente de determinación lineal (R2), el cual se puede definir como el porcentaje de varianza de Y que se puede explicar por X, y se le suele llamar calidad o bondad del ajuste porque valora la proximidad de la nube de puntos en la recta de regresión (o dicho con otras palabras, cómo está de ajustada la nube de puntos en la recta de regresión). En las regresiones lineales, este coeficiente tiene una expresión extremadamente simple, ya que coincide con el cuadrado del coeficiente de correlación lineal: rXY 2 = R2. Así, en nuestro caso el coeficiente de determinación será R2 = rXY 2 = 0,92 = 0,81 y, por tanto, la fiabilidad es bastante elevada. b) Calcula el modelo de regresión lineal que mejor aproxima el número de trabajadores en función de la facturación. En este caso se pide la recta que concreta el número de trabajadores en función de la facturación. Por lo tanto, nos pide la recta X sobre Y. Para calcularla, tan solo hay que hacer las sustituciones correspondientes, ya que el ejercicio nos da todos los estadísticos necesarios. Sustituyendo: 45 SXY ·(Y −100 g aislando la variable y mediante ·(Y −Y ) g X −14 = 2 625 SY matemáticas elementales, obtenemos: X = 0,072 Y + 6,8. X−X =
Es decir, Número de trabajadores = 0,072 · la facturación + 6,8.
P. Juan Verdoy / M. J. Beltrán / M. J. Peris - ISBN: 978-84-15444-38-1 132
Problemas resueltos de estadística aplicada a las ciencias sociales - UJI - DOI: http://dx.doi.org/10.6035/Sapientia100