Making It: Industry for Development (#2)

Page 12

GLOBAL FORUM

HOT TOPIC ® plantation and/or other intermediaries. Hunger and the need to feed their families leads individuals to accept appalling working conditions – at times bordering on or equivalent to slavery.

Bioenergy development in sub-Saharan Africa STEPHEN KAREKEZI and JOHN KIMANI –

Structural reforms We have to start assessing biofuels through the prism of the one billion hungry people on the planet today. In other words, governments have to meet their legal responsibility to respect, protect, and fulfil their populations’ right to food. Hence, if biofuel production is to be expanded, then structural reforms are necessary to address structural issues. We cannot just pay lipservice to the well-being of current and future generations. There must be land reforms targeted at empowering vulnerable groups, such as landless labourers, forest dwellers, smallholders, indigenous groups, and women. Budgets need to be adjusted to support such programmes, and to reflect the prioritization of vulnerable groups with respect to the right to food. And legislative measures that promote inclusive models – such as Brazil’s Pro-Biodiesel programme – should be replicated and pursued as a priority. Such measures would bring biofuels closer to being able to deliver the promised social solution. Meanwhile, developed countries – partly responsible for the growing demand for biofuels as a result of their subsidy schemes – must acknowledge and address the social and environmental effects of the production, and the expansion of production, of biofuels. After all, as JeanJacques Rousseau wrote many years ago, “Between the powerful and the weak, it is liberty that oppresses and it is the law that liberates.” The right to food must be upheld by all. I

12 MakingIt

AFREPREN/FWD (Energy, Environment, and Development Network for Africa), a non-governmental organization based in Nairobi, Kenya. Recent high oil and coal prices, as well as an intensified debate about climate change, have led many analysts to suggest that modern bioenergy development could mitigate the negative impacts of unstable fossil fuel prices and continued reliance on inefficient and unhealthy traditional biomass energy options, as well as contribute to reducing greenhouse gas emissions. Consequently, over the last three to four years, many sub-Saharan African countries have started modern bioenergy initiatives, and a number of them have rushed into agreements with international investors for large-scale liquid biofuel development. Some countries have allowed the clearing of virgin forest land, as well as the conversion of land suitable for food crops into fields for biofuel crops, with probable adverse impacts on forest stocks and food security. In addition, many of the new biofuel programmes are not designed to meet internal demand, but are largely aimed at international export markets, especially the European Union (EU), which has announced ambitious biofuel targets. The above developments have led some African governments to implement measures that limit the direct production of bioenergy (particularly liquid biofuel) from food crops and/or from former food-producing farmlands. For example,

in 2008, the President of the United Republic of Tanzania banned the cultivation of jatropha in a region earmarked for rice production. The controversy over liquid biofuel development in sub-Saharan Africa has overshadowed less well-known, but successful, biofuel options that deliver significant positive impacts to both rural small-scale farmers and national economies in sub-Saharan African. One of the most significant of these is high pressure cogeneration from the byproducts of cane sugar production.

Cogeneration Cogeneration is the simultaneous production of electricity and process heat from a single dynamic power plant. A cogeneration power plant burns bagasse (the fibrous residue remaining after sugarcane stalks are crushed to extract their juice) to generate steam for process heat, and for driving a turbine to produce electricity. Bagasse-based cogeneration utilizes the waste material which is otherwise a nuisance for sugar refineries – it is a fire hazard, as well as an environmental concern as the decomposition of bagasse releases methane, a more potent greenhouse gas than carbon dioxide. Bagasse-based cogeneration is not a new technology in the sub-Saharan African sugar industry, but what is novel is the use of highly efficient cogeneration equipment to create an increasingly important source of commercial energy supply. Leading in this process is


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.