1B47 Introductory Classical Mechanics Course notes (UCL)

Page 40

It was noted earlier that : d r2 dt

:

::

= 2rr + r2 = r 2r + r

::

= 0:

:

(303) :

Thus as r 6= 0, then r2 is constant, and so the angular momentum L = mr2 is also constant. Hence :

=

L mr2

(304)

and the radial equation can therefore be written in the form ::

m r

L2 m2 r3

=

K : r2

(305)

Instead of solving for r and as functions of time we will consider the shape of the orbit, i.e. determine r as a function of . To do this we de…ne u = 1=r. We then have r

=

r

=

dr d 1 1 du = = = dt dt u u2 dt L L du 1 du = : 2 2 u d mr md

1 du d ; u2 d dt

(306) (307)

Di¤erentiating again we get ::

r

::

r

= =

dr d L du = dt dt md L2 2 d2 u u : m2 d 2

=

d d

L du md

d = dt

L d2 u md 2

L mr2

(308) (309)

In terms of u the radial equation (305)is m Multiplying through by

L2 2 d2 u u m2 d 2

u3

L2 m2

= Ku2 :

(310)

m= L2 u2 gives d2 u +u= d 2

mK : L2

(311)

In terms of the variable y = u + mK=L2 this is the equation of simple harmonic motion, d2 y +y =0 d 2 with solution y = A cos (

0 ).

(312)

Thus the general solution of eq(311) is u = A cos (

0)

mK 1 = : L2 r

(313)

This is of the same form as the general equation of a conic section, (see eq(317)) u=

1 1 = (1 + e cos ) : r h

We can choose 0 = 0 as this de…nes the orientation of the trajectory. If K is negative, i.e. attractive force, the trajectory is of the form shown in …g 48. If K is positive, i.e. repulsive force, the trajectory is of this form in …g 49

40

(314)


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.