
7 minute read
6.7 Reacciones de adición electrofílica de alquenos
from Química Orgánica
Tabla 5.4 Una comparación de las reacciones de laboratorio y las biológicas típicas
Reacción de laboratorio Reacción biológica
Advertisement
Disolvente Líquido orgánico, como el éter Ambiente acuoso en las células Temperatura Intervalo amplio: 80 a 150 C Temperatura del organismo Catalizador Ninguno o muy sencillo Grande, se necesitan enzimas complejas Tamaño del Usualmente pequeño y sencillo Grande, coenzimas complejas reactivo
Especificidad Poca especificidad para el sustrato Especificidad muy alta para el sustrato
Enfocado a . . .
¿De dónde provienen los fármacos?
Aprobada para su venta en marzo de 1998, el Viagra ha sido utilizado por más de 16 millones de hombres. Se está experimentando actualmente un estudio como tratamiento para la preeclampsia, una complicación del embarazo que es responsable de por lo menos 70000 muertes cada año. ¿De dónde provienen los nuevos fármacos como éste? Se ha estimado que la mayor parte de las compañías farmacéuticas en Estados Unidos erogan más de 33 mil millones de dólares por año en el desarrollo e investigación de nuevos fármacos, mientras que las agencias gubernamentales y las fundaciones privadas gastan otros 28 mil millonesde dólares. ¿Qué compra este dinero? Para el periodo de 1981-2004, el dinero resultó en un total de 912 entidades moleculares nuevas (NMEs) —nuevas sustancias químicas biológicamente activas aprobadas para su venta como fármacos por la Administración de Alimentos y Fármacos de Estados Unidos (FDA)—. Esto da como promedio sólo 38 fármacos nuevos por año distribuidos entre todas las enfermedades y condiciones, y el promedio ha estado disminuyendo continuamente. En 2004, sólo fueron aprobadas 23 NMEs. ¿De dónde provienen los nuevos fármacos? De acuerdo con un estudio realizado por el Instituto Nacional del Cáncer en Estados Unidos, sólo 33 por ciento de los nuevos fármacos son enteramente sintéticos y© BSIP/Phototake completamente sin relación con cualquiera de las sustancias de origen natural. El 67 por ciento restante toman su rumbo en mayor o menor medida de la naturaleza. Las vacunas y las proteínas de origen biológico diseñadas genéticamente contabilizan 15 por ciento de las NMEs, pero la mayor parte de los fármacos nuevos provienen de productos naturales, un término amplio tomado por lo general para referirse a las moléculas pequeñas encontradas en bacterias, plantas y otros organismos vivos. Los productos naturales sin modificar aislados directamente que produce el organismo cuentan con 28 por ciento de las NMEs, mientras que los productos naturales que han sido modificados químicamente en el laboratorio contabilizan el 24 por ciento restante.
Origen de los nuevos fármacos 1981-2002
Relacionado con productos naturales (24 por ciento) Productos naturales (28 por ciento)

Muchos años de trabajo intervienen en el filtrado de varios miles de sustancias para identificar un compuesto individual que puede obtener en última instancia la aprobación como NME; pero después que ha sido identificado este compuesto individual, apenas ha comenzado el trabajo debido a que toma un promedio de 9 a 10 años para que un fármaco pase por el proceso de aprobación. Primero, debe ser demostrada la seguridad del fármaco en animales y ser diseñado un método económico de manufactura. Con estos preliminares, se envía una solicitud de Nueva Droga para Investigarse (IND) a la FDA para permitir el inicio de las pruebas en humanos.
Las pruebas en humanos toman de cinco a siete años y se dividen en tres fases. En la fase I se realizan pruebas clínicas en un grupo pequeño de voluntarios sanos para establecer la seguridad y buscar los efectos secundarios, y son necesarios varios meses o un año y sólo alrededor de 70 por ciento de los fármacos pasan este punto. En la fase II las pruebas clínicas siguen probando el fármaco por uno o dos años en varios centenares de pacientes con una enfermedad objetivo, buscando seguridad y eficacia y sólo pasa alrededor de 33 por ciento del grupo original. Finalmente, en la fase III se realizan pruebas en una muestra grande de pacientes para documentar definitivamente la seguridad, dosificación y eficacia del fármaco, y si éste es uno del 25 por ciento del grupo original que ha llegado hasta aquí, se recopila toda la información en una solicitud de Aplicación de Nuevo Fármaco (NDA) y se envía a la FDA para su revisión y aprobación, lo cual toma otros dos años. Se han ocupado hasta ahora 10 años y erogado por lo menos 500 millones de dólares y sólo han tenido éxito en las pruebas el 20 por ciento de los fármacos iniciales. Finalmente el fármaco empezará a aparecer en los botiquines. La siguiente línea de tiempo muestra el proceso.
Solicitud IND
Descubrimiento del fármaco Pruebas en animales, manufactura Pruebas de la fase I Pruebas clínicas de la fase II Pruebas clínicas de la fase III NDA Vigilancia continua
Año 0 1 2 3 4 5 6 7 8 9 10
calor de reacción, 154 cambio de energía libre de
Gibbs ( G), 153 cambio de entalpía ( H), 154 cambio de entropía ( S), 154 carbocatión, 148 electrófilo, 145 endergónica, 153 endotérmica, 154 energía de activación ( G‡), 158 energía de disociación de enlace (D), 155
RESUMEN Y TÉRMINOS CLAVE
Hay cuatro tipos comunes de reacciones: las reacciones de adición suceden cuando dos reactivos se adicionan uno al otro para dar un producto individual; las reacciones de eliminación suceden cuando un reactivo se divide para dar dos productos; las reacciones de sustitución suceden cuando dos reactivos intercambian partes para dar dos productos nuevos; y las reacciones de rearreglo suceden cuando un reactivo experimenta una reorganización de enlaces y átomos para dar un producto isomérico.
A una descripción completa de cómo ocurre una reacción se le llama su mecanismo. Hay dos tipos generales de mecanismos por los que ocurren las reacciones: mecanismos por radicales y mecanismos polares. Las reacciones polares, el tipo más común, ocurren debido a una interacción atractiva entre un sitio nucleofílico (rico en electrones) en una molécula y un sitio electrofílico (pobre en electrones) en otra molécula. En una reacción polar se forma un enlace cuando el nucleófilo dona un par de electrones al electrófilo. Este movimiento de electrones está indicado por una flecha curva que muestra la dirección en
estado de transición, 158 exergónica, 153 exotérmica, 154 intermediario de la reacción, 160 mecanismo de reacción, 139 nucleófilo, 145 radical, 139 reacción de adición, 137 reacción de eliminación, 138 reacción de rearreglo, 138 reacción de sustitución, 138 reacción polar, 139 reacción por radicales, 139 la que viaja el electrón del nucleófilo al electrófilo. Las reacciones por radicales involucran especies que tienen un número impar de electrones. Se forma un enlace cuando un reactivo dona un electrón.
Los cambios de energía que tienen lugar durante las reacciones pueden describirse considerando la rapidez de la reacción (qué tan rápida es la reacción) y los equilibrios (en qué cantidad ocurre la reacción). La posición de un equilibrio químico está determinada por el valor del cambio de energía libre ( G) para la reacción, donde G H T S. El término entalpía ( H) corresponde al cambio neto en la fuerza de los enlaces químicos que se rompen y forman durante la reacción;el término entropía ( S) corresponde al cambio en la cantidad de desorden durante la reacción. Las reacciones que tienen valores negativos de G liberan energía, se dice que son exergónicas y tienen equilibrios favorables; y las reacciones que tienen valores positivos de G absorben energía, se dice que son endergónicas, y tienen equilibrios desfavorables.
Una reacción puede describirse gráficamente utilizando un diagrama de energía que sigue el curso de la reacción desde el producto, pasando por el estado de transición, hasta el producto. El estado de transición es un complejo activado que ocurre en el punto de máxima energía de una reacción. La cantidad de energía necesaria por los reactivos para alcanzar su punto máximo es la energía de activación, G‡ y a mayor energía de activación, más lenta es la reacción.
Muchas reacciones suceden en más de un paso e involucran la formación de un intermediario de la reacción. Un intermediario es una especie que permanece en un mínimo de energía entre pasos en la curva de la reacción y se forma brevemente durante el curso de la reacción.
Polar
B –
Nucleófilo
A+
Electrófilo
A B
Radical
B +
A A B
EJERCICIOS
VISUALIZACIÓN DE LA QUÍMICA
(Los problemas 5.1 al 5.13 aparecen dentro del capítulo.) 5.14 El siguiente haluro de alquilo puede prepararse por adición de HBr a dos diferentes alquenos. Dibuje las estructuras de ambos (café rojizo Br).
