Arrow Countdown

Page 24

AVRO Photo

FLYING THE ARROW

Chase Pilot, “Spud” Potocki reports informally to V.P. and G.M. John Plant on how the Arrow appeared to handle on first flight. Peter Cope is perfectly silhouetted in Potocki’s oxygen mask.

additional ‘g’ instead of 16 lbs. which normally would be expected. This effect is more pronounced supersonically. For small values of ‘g’ however, the general decrease in sensitivity in pitch in this flight region improves the situation as much larger control displacements (hence forces) are needed for steady manoeuvre and the initial non-linearity of force with ‘g’ is lost in the loads necessary to hold steady ‘g’ value. (Approximately 40 lbs. at 1.35 MN, 3 ‘g’ indicated, this being the maximum permissible ‘g’ value for supersonic flight.)

9. Subsonic Flight With Damper In Yaw Only This is quite straight forward, particularly if the gear-up mode is engaged. Any turn in this case is automatically co-ordinated, and this results in a flight without sideslip. For the damper gear-down mode, the transient directional disturbances are well damped but in a steady turn some sideslip will be evident to the pilot ( normally port sideslip in a turn to port and vice versa ) and this must be eliminated by small rudder input, which should be removed once straight flight is achieved.

10. Supersonic Flight Whilst it is possible at certain altitudes to achieve supersonic flight without afterburning, it is recommended that the A/B is used for supersonic flight. The transition from subsonic to supersonic flight is characterized by small disturbances in roll which might or might not be detected at about 0.95 MN and can be detected on instruments by a large jump in height indication (approximately 1500 feet).

20 Arrow Countdown

Once the aircraft settles in supersonic flight, the control in pitch and roll improve markedly due to general reduction in sensitivity in control. The flight is much steadier and easier, provided the damper in yaw is used. Without the damper, sideslip will be generated with ease and must be eliminated with co-ordination of controls as previously mentioned. Past certain areas the pilot will experience utmost difficulty to fly the aircraft clean (without the damper) – therefore no clean mode is allowed without the damper unless specially briefed. As no rolling manoeuvres have been done yet on the aircraft and no excessive manoeuvering in pitch – this at the present prohibited. The acceleration in supersonic flight is rapid and although no trim changes accompany this – it is difficult to fly the aircraft accurately on instruments to any given precision – at first. This particularly refers to the Mach number or ASI stabilization. The deceleration from high supersonic flight is rapid if the afterburner is closed. The engine, however, should never be throttled back past 90% RPM until the speed falls off to subsonic value. Tests on the intake behaviour after rapid closing of the throttle have not been completed as yet. The airbrake supersonically does not have much effect. It must be appreciated that any turn gives increased drag and Mach number may tend to fall. Special briefing must be obtained before any appreciable ‘g’’ is pulled on the aircraft in excess of 1.5 indicated ‘g’ at high Mach numbers.

11. High Indicated Speed Flight With increase of speed the feel of the aircraft becomes progressively more sensitive particularly in pitch axis – at 450 kts. only small stick movements may generate quite large aircraft response. The trim rate however is quite slow and should be used to get as near as possible to trimmed condition. If the aircraft is out of trim in pitch and an attempt is made to hold attitude by pressure on the stick the steadiness of the flight will be lost because of difficulty of holding an accurate force just outside the breakout force – this may lead to pilot induced oscillations which can become severe. In this case it is advised that the stick should be left alone for the oscillations to damp out naturally – and aircraft retrimmed for further flight. The overall damping in pitch is much lower in tail-less aircraft generally – therefore more rapid response can be anticipated. Depending on correctness of setting up of the feel unit – occasionally some small backlash in pitch axis can make accurate control difficult without the pilot in actual fact coming out of break force. This means that much lower forces on the stick can command response – being an undesirable characteristic, it must be reported after the flight.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.