Matemáticas 3er. Grado Volumen II

Page 17

MATEMÁTICAS

III

EL CORRAL DE LOs CONEJOs

sEsIóN 2

Para empezar

Don Chon tiene una malla de 100 m de longitud para hacer un cerco. Ha decido usar el material para hacerle un corral rectangular a sus conejos. No sabe todavía de qué dimen­ siones hacerlo, pues quiere que sus conejos tengan el mayor terreno posible. a) ¿De qué medidas se puede construir el corral rectangular usando los 100 m de malla? Encuentren cuatro posibilidades para el frente y cuatro para el fondo y anótenlas en las columnas a, B, c y D.

Rectángulo

A

B

C

D

Fondo

Frente (m) Fondo (m)

Frente

b) Calculen el área de cada uno de los corrales que propusieron. Área de a =

m2.

Área de B =

m2.

Área de c =

m2.

Área de D =

m2.

c) ¿Cuál de los cuatro rectángulos que propusieron tiene mayor área? Comparen las medidas de los corrales que propusieron y elijan de entre todos ellos cuál es el que tiene mayor área.

Consideremos lo siguiente Para encontrar las medidas del corral que encierra la mayor área posible, conviene tener una expresión para el área. Denoten con x la longitud del frente del corral. Recuerden que el corral debe usar los 100 m de malla. a) ¿Cuál deberá ser la medida del fondo? Fondo = b) Representen con la letra y el área del corral que mide x metros de frente y escriban una expresión que relacione x con y . y = Verifiquen que las expresiones que escribieron sirven para calcular el área de los corrales a, B, c y D a partir de las medidas de sus frentes. 15

MAT3 B3 S14.indd 15

12/10/08 6:02:23 PM


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Matemáticas 3er. Grado Volumen II by Rarámuri - Issuu