Maestro. Matemáticas 3er. Grado Volumen I

Page 86

Propósito de la sesión. Determinar la relación entre la medida de un ángulo inscrito y uno central que subtiendan el mismo arco de una circunferencia.

secuenci a 4 RELACIONES A MEDIAS

SESIóN 2

Para empezar

Los lados de cualquier ángulo en una circunferencia, inscrito o central, determinan un arco en la circunferencia. En estas circunferencias el arco determinado por los ángulos dados está marcado con morado. Se dice que los arcos son subtendidos por los ángulos que los determinan.

Propósito de la actividad. Identificar el arco que subtiende un ángulo inscrito o un ángulo central.

a

R

c B

s

O

Q P

Posibles errores. En la figura 2 es posible que algunos alumnos marquen el arco que corresponde al ángulo central que es menor a 180° y no al que está señalado. Si lo considera necesario, dibuje un ejemplo parecido en el pizarrón y comente este caso con todo el grupo.

El arco c es subtendido por el aOB; el arco s es subtendido por el PQR. En cada circunferencia marquen con azul el arco que subtienden los ángulos centrales y con rosa el arco que subtienden los ángulos inscritos.

Figura 1

Figura 2

Figura 4

Figura 3

Figura 5

¿En qué circunferencias se cumple que el ángulo central subtiende el mismo arco que el ángulo inscrito?

1, 2 y 5

50

MAT3 B1 S04.indd 50

84

6/20/08 4:58:58 PM

L ib ro pa ra e l m a e st r o

MAT3 B1 S04 maestro.indd 84

6/20/08 5:13:13 PM


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.