Txt.02 - Std'12 - Mathematics - Part-I

Page 186

CONTINUITY AND DIFFERENTIABILITY

Example 41 If y = sin–1 x, show that (1 – x2)

d2y dy −x =0. 2 dx dx

Solution We have y = sin–1 x. Then

dy = dx

1 (1 − x 2 )

(1 − x 2 )

or

dy =1 dx

d ⎛ dy ⎞ 2 ⎜ (1 − x ) . ⎟ = 0 dx ⎝ dx ⎠

So

(

)

or

(1 − x 2 ) ⋅

d 2 y dy d + ⋅ dx 2 dx dx

or

(1 − x 2 ) ⋅

d 2 y dy 2x − ⋅ =0 2 dx 2 1 − x 2 dx

(1 − x 2 ) = 0

d2y dy −x =0 2 dx dx Alternatively, Given that y = sin–1 x, we have Hence

(1 − x 2 )

y1 =

So Hence

1 1− x

2

, i.e., (1 − x 2 ) y 2 = 1 1

(1 − x 2 ) . 2 y1 y2 + y12 (0 − 2 x) = 0 (1 – x2) y2 – xy1 = 0

EXERCISE 5.7 Find the second order derivatives of the functions given in Exercises 1 to 10. 1. x2 + 3x + 2 4. log x

2. x 20 3

5. x log x

3. x . cos x 6. ex sin 5x

7. e6x cos 3x 8. tan–1 x 9. log (log x) 10. sin (log x) d2y + y=0 11. If y = 5 cos x – 3 sin x, prove that dx 2

183


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.