Name:________________

Form class:___________

Set:1

Multiplication and Division: Level 5

1

34 x 78

6

6532 x 24

2

29 x 75

7

276 ÷ 12

3

76 x 76

8

420 ÷ 12

4

405 x 17

9

416 ÷ 13

5

324 x 14

10 456 ÷ 19

Overall, for this homework I think my success level is: I need to practice………

Low

O

High

O

O

O

BODMAS: Level 5

1

7 + 24 ÷ 6

8

36 ÷ (6 ÷ 2)2

15

3 + 2 x 4 + 1 = 21

2

(24 – 9) ÷ 3

9

2 + (4 + 3)2

16

3 + 2 x 4 + 1 = 25

3

4 + 32

10

7 + 5 x (2 + 5)2

17

3 + 2 2 x 3 – 1 = 50

4

(3 + 2)2

11

92 + 42 + (4 ÷ 2)2

18

40 ÷ 3 + 2 x 4 = 2

5

2

( [3 + 1] x 2) - 5

2

Complete the boxes: 19 x( ) = 12 Using 2, 3, 4, 6, 10

6 + 12 ÷ 4 – 2

12

6

5 x ( 2 + 3) – 4

Insert brackets if needed: 13 6 + 20 ÷ 5 = 10 20

7

(3 + 9) ÷ ( 2 + 1)

14

7+2x3+1

Overall, for this homework I think my success level is: I need to practice………

21

x( + ) = 100 Using 2, 3, 4, 6, 10

÷( )=5 Using 2, 3, 4, 6, 10

Low

O

O

O

High

O

Substitution: Level 6

1)

2)

3)

If a)

a = 5 b = 2 c = 3 d = 7. Find: 7a + 3b b)

ab – 3c

c)

5a ( bc + 2d )

2a2

If a)

a = 3 b = 4 c = 7 d = 6. Find: 3b – 2a b)

c)

7a (2b + 3c - 2d)

5a2b

If

s = ut + ½ at2

a)

u = 2 , a = 10 , t = 2

b)

u = 7 , a = 10 , t = 5

c)

a=3,u=6,t=2

d)

t=5,u=5,a=1

d)

d)

find s when:

Overall, for this homework I think my success level is: I need to practice………

Low

O

O

O

High

O

Brackets: Level 6

1)

2)

Expand a) 3(x + 2)

b) 2(x + 5)

c) 5(x + 3)

d) 7(x + 4)

e) 2(x – 2)

f) 5(x – 3)

g) 3(x – 4)

h) 4(x – 1)

i)

2(3x + 2)

j) 5(2x + 3)

k) 4(5x + 1)

l) 2(7x + 5)

m) 3(2x – 3)

n) 7(2x – 5)

o) 2(5x – 4)

p) 8(3x – 5)

q) 3(1 + 3x)

r) 2(5 – 3x)

Expand and Simplify a) 3(x + 2) + 2(x + 5)

b) 5(x + 3) + 7(x + 4)

c) 2(x – 2) + 5(x – 3)

d) 3(x – 4) + 4(x – 1)

e) 2(3x + 2) + 5(2x + 3)

f) 4(5x + 1) + 2(7x + 5)

g) 3(2x – 3) + 7(2x – 5)

h) 3(1 + 3x) + 2(5 – 3x)

Overall, for this homework I think my success level is: I need to practice………

Low

O

O

O

High

O

Number Patterns: Level 6

1. Put the next 3 numbers in each of these patterns, state the nth and find the 50 th term: a) 2, 6, 10, 14, …

g) 0, 3, 6, 9, 12, …

b) 30, 20, 10, 0, …

h) 1, -1, -3, -5, …

c) 1, 21, 41, 61, …

i) 100, 91, 82, 73,...

d) 5, 8, 11, 14, …

j) 10, 7, 4, 1, -2, …

e) 9, 14, 19, 24, …

k) 9, 7, 5, 3, …

f) 3, 10, 17, 24, …

l) 18, 14, 10, 6, …

2. Put the next 3 numbers in each of these patterns, state the nth term: a) 1, 4, 9, 16 b) 2, 8,18, 32 c) 3, 6, 11, 18

Overall, for this homework I think my success level is: I need to practice………

Low

O

O

O

High

O

Angles: Level 6

1.

Work out the size of each missing angle in the diagrams below. (a)

Not drawn accurately

50°

p

30°

Not drawn accurately

120° 100° q

Not drawn accurately r

36° ..................................................................................................................................... ..................................................................................................................................... Answer r = ………………………………………degrees (d)

Not drawn accurately s 72°

(a)

Triangle PQR is isosceles.

PQ = PR

Angle R = 44°

P N o t d ra w n a c c u ra te ly

Q

44°

R

Calculate the size of angle P. ..................................................................................................................................... Answer ............................................................. degrees .

(b)

The words in this list are used to describe angles. alternate corresponding exterior

interior opposite

c e N o t d ra w n a c c u ra te ly d

Choose a word from the list to describe each of these pairs of angles.

3.

(i)

c and d are ............................................................................. angles

(ii)

d and e are ............................................................................. angles

In the diagram, AB is parallel to CD. C

A x

112º

N o t d ra w n a c c u ra te ly

130º y

B

(a)

D

(b)

Overall, for this homework I think my success level is: I need to practice………

Low

O

O

O

High

O

Probability: Level 6 1)

5 red, 3 blue and 2 yellow discs were placed in a bag. Find the probability of picking a) a red disc

________________________________

b) a blue disc

________________________________

c) a black disc

________________________________

d) not a yellow disc

________________________________

2)

The probability of a train being on time is 0.4 what is the probability of the train being late. _________________________________________________________

3)

The probability that England win a cricket match against Australia is 0.1 and of a draw is 0.2. What is the probability of Australia winning the match? _________________________________________________________

4)

A box of biscuits contains ginger, chocolate and plain biscuits. Is the probability of picking a ginger biscuit at random 1/3? Explain your answer. ___________________________________________________________ _________________________________________________________

5)

A pack of 9 cards numbered from 1 to 9 inclusive are laid face down on the table. If you choose a card at random find the probability of choosing a) an even number

___________________________________

b) an odd number

___________________________________

c) a prime number

___________________________________

d) a square number

___________________________________

e) a triangular number

___________________________________

f)

(i)

the same number on each dice

_____________

(ii)

an even score

_____________

(iii)

a score which is a multiple of 3

_____________

(iv)

a score above 12

_____________

Which is the most likely score to throw? _____________

6)

The table below gives the membership of a golf club Male 70 240

Female 30 160

a) There was Christmas draw for child members where each child’s name was placed in a hat and one was drawn out. What was the probability the first drawn was female? _____________________________________________________ b) A similar draw was done with the adults. What was the probability the first adult drawn was female? _____________________________________________________ c) When everyone was in the hat for the summer draw. What was the probability the first drawn was female? _____________________________________________________ 7)

A red and blue dice are thrown. a) Complete the sample space diagram below to illustrate all the possible total scores. 1 2 3 4 5 6

1 2

2 3

3

4

5

6

b) What is the probability of throwing (i)

the same number on each dice

_____________

(ii)

an even score

_____________

(iii)

a score which is a multiple of 3

_____________

(iv)

a score above 12

_____________

c) Which is the most likely score to throw?

_____________

Overall, for this homework I think my success level is: I need to practice………

Low

O

O

O

High

O

Exam style questions Multiplication and Division Q1.

Two whole numbers multiply together to give an answer of 1000. Neither of the numbers contains the digit zero. What are the two numbers? .................................................................................................................................. ..................................................................................................................................

Q2.

Susan is choosing pairs of numbers from this list. 6 (a)

23

24

51

108

She multiplies two numbers together. Which two numbers should she choose to get an answer between 200 and 300? .........................................................................................................................

(b)

She divides one number by another number. What is the largest possible answer? .........................................................................................................................

Substitution Q1.

(a)

Find the value of 3x + 4y when x = 6 and y = –3 ..........................................................................................................................

(b)

Sam buys x packets of sweets. Each packet of sweets costs 22 pence. Sam pays with a £5 note. Write down an expression for the change, in pence, Sam should receive. ..........................................................................................................................

Q2.

(a)

Find the value of 3x + 5y when x = –2 and y = 4 .........................................................................................................................

(b)

Find the value of 3a2 + 5 when a = 4 .........................................................................................................................

(c)

k is an even number. Jo says that 1/2k + 1 is always even. Give an example to show that Jo is wrong. .........................................................................................................................

(d)

The letters a and b represent prime numbers. Give an example to show that a + b is not always an even number. .........................................................................................................................

Brackets Q1.

(a)

Expand and simplify

4(2x – 1) + 3(x + 6)

......................................................................................................................... ......................................................................................................................... (b)

Expand

x2(4 – 2x)

......................................................................................................................... ......................................................................................................................... Q2.

(a)

Simplify 2x + 8 + 4x – 3 .........................................................................................................................

(b)

Solve the equation.

......................................................................................................................... (c)

Tom is investigating the two expressions ab + c and a(b + c) (i)

He finds that both expressions have the same value when a = 1, b = 3 and c = 4. Show that this is true. ................................................................................................................ ................................................................................................................

(ii)

Tom says that this means that a(b + c) = ab + c. Explain why Tom is wrong. ................................................................................................................ ................................................................................................................

Number Patterns Q1.

The nth term of a sequence is given by the expression n2– 3 Write down the first three terms of the sequence. ..................................................................................................................................

Q2.

(a)

A sequence starts 2,

7,

17,

......

The rule for finding the next term in this sequence is to multiply the previous term by 2 and then add on 3 Work out the next term. ......................................................................................................................... (b)

The rule for finding the next term in a different sequence is to multiply the previous term by 2 and then add on a, where a is an integer. The first term is 8 and the fourth term is 127 8

......

......

127

Work out the value of a. ......................................................................................................................... .........................................................................................................................

Angles Q1.

AC and DG are parallel lines. Angle ABE = 40째 Angle BFG = 110째

Not drawn accurately (a)

Explain why angle BEF is 40째 ........................................................................................................................

(b)

Show, giving reasons, that triangle BEF is isosceles. ........................................................................................................................ ........................................................................................................................

Q2.

Write down the values of a and b.

Answer a = ...................... degrees, b = ..................... degrees (Total 2 marks) Q3.

ABCD is a rhombus and ABCE is a kite.

Work out the value of x. ..................................................................................................................................

Probability Q1. Forty people take a driving test at Centre A on one day. The table shows the results. Pass

Fail

Male

10

13

Female

6

11

(a )A person is chosen at random from the group. What is the probability that the person is male? .........................................................................................................................

(b) A person is chosen at random from the group. What is the probability that the person passed the test? ......................................................................................................................... (c) It is known that throughout Britain the probability of a person passing their test is 0.7. John says it is easier to pass the test at Centre A. Explain why John could be wrong. ......................................................................................................................... ......................................................................................................................... Q2. Twenty pupils each shuffle a pack of coloured cards and choose a card at random. The colour of the card is recorded for each pupil. B G Y B

Y R R B

Y Y B G

G B B R

R B Y Y

(a) Use these results to calculate the relative frequency of each colour.

Colour

Red

Blue

Green

Yellow

Relative frequency

(b) Use the results to calculate how many times you would expect a blue card if 100 pupils each choose a card at random. ..........................................................................................................................

Year 7 Set 1 Term 1

Homework Booklet