BATTERY PIONEERS: ANN MARIE SASTRY At the cutting heart of new battery technology stands one formidable individual, Ann Marie Sastry, now one of the key figures in the development of advanced batteries. Kevin Desmond reports.
Fortune favours the brave — and the determined Women in the battery business are still far and few between. And especially so in leadership positions. But Ann Marie Sastry has achieved worldwide respect and prominence for her work in three careers — as a leading academic and research chief, as an adviser to both government and big business, and most recently as a leading the way to commercialization of new understandings of advanced batteries. Ann Marie Sastry was born in Peoria, Illinois. Her father, Tony Sastry, a native of India, was a professor of mathematics at Bradley University, while her mother, Barbara Sastry, of German descent, started as a first grade teacher. Sastry left high school as valedictorian, and went on to achieve top honours in college. She graduated with a BS in Mechanical Engineering at the University of Delaware, where she attended school on a Eugene DuPont Fellowship.
It was an auspicious moment in her life. She says: “The luckiest thing that ever happened to me was the DuPont scholarship, because I would not otherwise have gone to Delaware — and it probably would have been a lot longer before I met my husband, Christian Lastoskie, who attended on the same scholarship. “We met in September 1985 and married in July 1989, just after graduating.” Sastry attended Cornell University as a National Science Foundation Graduate Fellowship student and earned a PhD in Mechanical Engineering in 1994. She then took a position as a senior member of the technical staff at Sandia National Laboratories in Albuquerque, New Mexico, where she wrote code for heterogeneous materials for static and dynamic finite element solvers. And it was here that she first began working on batteries.
After a year at Sandia, Sastry continued her battery research at the University of Michigan, in 1995 as a professor in the Mechanical Engineering department. At Michigan, her laboratory branched into many other areas of endeavour, including biology, mathematics, and engineered materials. Speaking to Batteries International she describes the way she works. “Generally the first thing I do is build a model. I always see systems as potentially tractable, that problems are all solvable if you are careful and succinct in prescribing them and bounding them, if you know what you want and know what you can give up. Although I love mathematics, I’ve always seen it as step one in my engineering work. “Batteries are the root technology for so many critical products and processes, from EVs to consumer electronics, to providing power and light using renewables and rethinking grid power. From a scientific perspective,
The team set a record in 2014, demonstrating an energy density of >1100Wh/l from cells produced by its pilot line in Ann Arbor, about double the value in commercially available cells today. 118 • Batteries International • Autumn 2015
www.batteriesinternational.com