Issuu on Google+

PRIMER  FORO  IBEROAMERICANO  DE  CIENCIA  PARA  LA  ENERGÍA   Quito,  Equador,  11-­‐13  Junho  2012  

Advanced Biofuel Biorefineries: How much are they complex ?

Francisco Gírio

Head of Bioenergy Unit at LNEG Coordinator of SIADEB National representative on the European Industrial Initiative in Bioenergy National representative on the EC Committe on Sustainability of Biofuels and Bioliquids


SIADEB – Sociedad Iberoamericana para el Desarollo de las Biorefinerias (created  under  the  auspices  of  Red  Cyted  310RT0397  “SIADEB”)   Quieres ser miembro ?

Registo: www.siadeb.org


BIORREFINERY CONCEPT Biochemical   Pla9orm   –   Biomass   fracEonaEon   through   physico-­‐chemical   and   biological   conversion   processes   of   biomass   elemental   components   in   order   to   produce  biofuels,  chemicals  or  intermediary  building  blocks;     Biochemical Plataform

Vegetable   Biomass Animal   Microbial  

Sugars, Lignin, ...

Residues

Biofuels Thermal and/or electrical energy

Bioenergy Bioproducts

By-products

Thermochemical Platform

CO, H2, Bio-oil, ...

Thermochemical   Pla9orm   -­‐   Biomass   thermal   treatment   processes   that   envisages   the   producEon   of   syngas   or   bio-­‐oil   as   a   building   brick   to   their   conversion  in  bioenergy  (electricity  and  heat),  biofuels  and  chemicals;     Adapted  from:  Sousa,  G.  (2010),  Workshop  de  Biorrefinarias,  LNEG,  Alfragide,  29  Set.  


CONVENTIONAL BIORREFINERIES

Oleaginous  Biorefinery  

Starch  Biorefinery  

Source:  Joint  European  Biorefinery  Vision  for  2030  –  Project  Star-­‐COLIBRI  


ADVANCED BIORREFINERIES

Green  Biorefinery  

Source:  Joint  European  Biorefinery  Vision  for  2030    –  Project  Star-­‐COLIBRI  


ADVANCED BIORREFINERIES

AquaQc  (Marine)  or  Algae  Biorefinery  

Source:  Joint  European  Biorefinery  Vision  for  2030    –  Project  Star-­‐COLIBRI  


EUROPEAN SET PLAN FOR BIOREFINERIES supporQng  DEMO  and  FLAGSHIP  plants  up  to  2020  

8


EUROPEAN SET PLAN FOR BIOREFINERIES supporQng  DEMO  and  FLAGSHIP  plants  up  to  2020  

9


Advanced  Biorefineries:  How  much  are  they  complex  in  the  future   (or  the  challenges  to  overcome  during  next  10  yrs)   Non-food biomass supply chain: Sustainable feedstock Lignocellulose recalcitrance

Feedstock prices Multi-product Bioeconomy

Competition for lignocellulosic biomass uses What will be the role of algae ? How to better integrate different technologies ? Dedicated versus mixed 1G/2G biorefineries Consumer acceptance

Lignocellulosic Biomass as a commodity Same type of biofuels or novel molecules take the lead ? Economic barriers (eg. high CaPEX, high risk) Trade barriers (subsidies, etc)

Demo and flagship Units 10


Advanced  Biorefineries:  How  much  are  they  complex  in  the  future   (or  the  challenges  to  overcome  during  next  10  yrs)   Non-food biomass supply chain: Sustainable feedstock Lignocellulose recalcitrance

Feedstock prices Multi-product Bioeconomy

Competition for lignocellulosic biomass uses What will be the role of algae ? How to better integrate different technologies ? Dedicated versus mixed 1G/2G biorefineries Consumer acceptance

Lignocellulosic Biomass as a commodity Same type of biofuels or novel molecules take the lead ? Economic barriers (eg. high CaPEX, high risk) Trade barriers (subsidies, etc)

Demo and flagship Units 11


Feedstock  for  ConvenQonal  and  Advanced  Biofuel-­‐based  Biorefineries  

Source:    Savage,  N.  (2011)  Nature,  vol.  474,  23  June.  


2007/2008:  Biofuels  too  much  dependence  from  vegetable   oils  and  cereals  led  to  generalised  criQcisms  by  media    

13


Influence  of  the  feedstock  price  on  biofuels  producQon  cost   STOP IN 2008 DUE TO FEEDSTOCK PRICES

Abengoa, Babilafuente, Salamanca

set07

Source:  Lurgi  biodiesel  technology  from  rapeseed    

apr08

set07

Prices: FOB Creil

14 apr08


World  PopulaQon  will  increase  more  than  9  Billion  people  before   2050  (+34%)  

Source:    Graham-­‐Rowe,  D.  (2011)  Nature,  vol.  474,  23  June.  


…and  world  energy  demand  will  increase  49%  unQl  2035    

49% 84%

14%

Source:  hXp://www.eia.gov/oiaf/ieo/highlights.html  


Sustainability  “hot  issues”  about  Biomass  for  Energy  

ü Environmentals  (biodiversity,  excessive  water  consumpEon;   GHG  emissions  savings,…)   ü Land  Uses  (direct  and  indirect  effects)  -­‐à  compeEEon  food  vs   energy     ü Socials  (respect  for  human  rights,  work  internaEonal   convenEons,  ….)    

   


Environmental  impact  of  the  biofuel  different  generaQons   LCA  well-­‐to-­‐wheel  (not  considering  LUC  and  ILUC)  

Fossil fuels 50%   saving  

90%  

1st generation

2nd generation

saving  

18  


Land Use Changes (LUC) RED  DIRECTIVE  (28/2009/EC),  for  purposes  of  use  in  EU  market,   Biofuels  shall  not  be  made  from  raw  material  obtained  from  :     Ø    Land  with  high  biodiversity  value      (e.g.  primary  forest,    protecEve  lands,  grasslands);   Ø    Land  with  high  carbon  stock        (e.g.  wetlands,  conEnuously  forested  areas)  and       Ø    Peatlands.  

Example: Tropical forest accumulates carbon stocks above soil of 235 ton/ha whereas palm trees only fix 48 ton/ha This means that the deforestation of a tropical forest for the cultivation of palm tree to produce the equivalent of 60 000 FAME biodiesel tons will requires 59-years of palm tree plantation in a 12 000 ha to compensate the carbon stock losses due to the previous deforestation


NET  GHG  EMMISSIONS  DUE  TO  LAND  USE  CHANGES  

Source:  Hoefnagels  et  al  (2010)  Renew.  Sust.  Ener.  Rev.,  14:1661  


Indirect  Land  Use  Changes  (ILUC)    

Brasil Sugar cane dos not directly deforest Amazon neither….. however, ILUC can occurs due to soy field displacement from South to North (eg. Amazon region)


Advanced  Biorefineries:  How  much  are  they  complex  in  the  future   (or  the  challenges  to  overcome  during  next  10  yrs)   Non-food biomass supply chain: Sustainable feedstock Lignocellulose recalcitrance

Feedstock prices Multi-product Bioeconomy

Competition for lignocellulosic biomass uses What will be the role of algae ? How to better integrate different technologies ? Dedicated versus mixed 1G/2G biorefineries Consumer acceptance

Lignocellulosic Biomass as a commodity Same type of biofuels or novel molecules take the lead ? Economic barriers (eg. high CaPEX, high risk) Trade barriers (subsidies, etc)

Demo and flagship Units 22


Lignocellulosic  biomass:  recalcitrance  &   heterogeneity   Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35:367-375


MULTIPRODUCTS IS THE KEY

source:  IEA  Bioenergy:  Task  42-­‐  Biorefineries  


Furfural   Great  potenQal:   •  Polymers   •  Solvents   •  AddiEves  for  fuels   (diesel),   •  Composite  materials   •  ...  

Kamm, et al. 2006


MULTIPRODUCT BIOREFINERY (How size is the Market ?) ü     The  heterogeneity  of  lignocellulosic  material  allows  to  produce  a  range  of  

products  as  broad  as  the  exisQng  in  petrochemical  industry;   ü   there  are  few  chemical  products  with  markets  large  enough  to  absorb  the   producEon  of  a  massive  biorefinery;     E.g.  Energy-­‐based  Biorefineries  

Main  product=  Biofuels  (Bioethanol,  Biodiesel,  others)   By-­‐Products=  Bioproducts  ,  Electricity,  Heat    

ü What  is  the  opQmal  scale  for  each  Biorefinery….How  small/ large  should  be  a  biorefinery  ?     ü E.g.  Small/medium  scale  for  rural  areas   ü E.g.  Large  for  installaEons  located  near  ports  or  industrial  sites  


Advanced  Biorefineries:  How  much  are  they  complex  in  the  future   (or  the  challenges  to  overcome  during  next  10  yrs)   Non-food biomass supply chain: Sustainable feedstock Lignocellulose recalcitrance

Feedstock prices Multi-product Bioeconomy

Competition for lignocellulosic biomass uses What will be the role of algae ? How to better integrate different technologies ? Dedicated versus mixed 1G/2G biorefineries Consumer acceptance

Lignocellulosic Biomass as a commodity Same type of biofuels or novel molecules take the lead ? Economic barriers (eg. high CaPEX, high risk) Trade barriers (subsidies, etc)

Demo and flagship Units 27


BIOMASS  IS  RENEWABLE….BUT  NOT  ENDLESS  !!  

20 Mtoe 227 TWh

80 Mtoe 45 Mtoe

Source:  AEBIOM  


BIOMASS  AVAILABILITY  

FONTE:  Joint  European  Biorefinery  Vision  for  2030   Star-­‐colibri  -­‐  Strategic  Targets  for  2020  –  CollaboraEon  IniEaEve  on  Biorefineries  


Advanced  Biorefineries:  How  much  are  they  complex  in  the  future   (or  the  challenges  to  overcome  during  next  10  yrs)   Non-food biomass supply chain: Sustainable feedstock Lignocellulose recalcitrance

Multi-product Bioeconomy

Competition for lignocellulosic biomass uses What will be the role of algae ? How to better integrate different technologies ? Dedicated versus mixed 1G/2G biorefineries Consumer acceptance

Lignocellulosic Biomass as a commodity Same type of biofuels or novel molecules take the lead ? Economic barriers (eg. high CaPEX, high risk) Trade barriers (subsidies, etc)

Demo and flagship Units 30


How to Invest in Biorefineries Biomass  Sustainability:  Can  you  obtained  it  in  a  sustainable  way  ?     Yes   Technological  Development:  Can  you  produce  it  (product)  ?   •   know-­‐how  availability    

No  

No  

•   technological  barriers   Yes   Market  ApracQveness:  Can  you  sell  it?   •   Market  distribuEon  control  

Non-­‐ OpEon   No  

•   Market  dimension   Yes   Economic:  Can  you  make  money  out  of  it?   •   ProducEon  costs  vs  selling  price  

No  

InteracQons  

•   CaPEX,  investment  risk   Yes  

No   CompeQQve  Advantage:  Can  you  do  beper?   •   Strategic  Partnerships  

Yes  

Valid  OpEon   Opportunity  

•   Process  IntegraEon     Adapted  from:  Sousa,  G.  (2010),  Workshop  de  Biorrefinarias,  LNEG,  Alfragide,  29  Set.  


Advanced  Biorefineries:  How  much  are  they  complex  in  the  future   (or  the  challenges  to  overcome  during  next  10  yrs)   Non-food biomass supply chain: Sustainable feedstock Lignocellulose recalcitrance

Multi-product Bioeconomy

Competition for lignocellulosic biomass uses What will be the role of algae ? How to better integrate different technologies ? Dedicated versus mixed 1G/2G biorefineries Consumer acceptance

Lignocellulosic Biomass as a commodity Same type of biofuels or novel molecules take the lead ? Economic barriers (eg. high CaPEX, high risk) Trade barriers (subsidies, etc)

Demo and flagship Units 32


Demo  Plants  for  Advanced  Bioethanol-­‐based  Biorefineries  


The  First  Demo  Advanced  Biorefinery  in  Europe  

Inbicon – Unidade de Demonstração, Kalundborg, Dinamarca


Kalundborg  DemonstraEon  Plant   Pretreatment

Molasses Outlet

Receiving

Input:     30,000  t  wheat  straw  

  Enzyme  suppliers:    Genencor,  Novozymes      

Lignin Outlet

Ethanol Outlet

   

Investment:   EUR  ~  60  mill.,   EUR  ~  10  mill.  DK  gov't  support     Supported  with  mEUR  9,1  by  EU  7th  FP  –  KACELLE  project    

Enzymatic Liquefaction

Distillation

Fermentation

Output:   5.4  mill.  liters  ethanol   13,100  t  lignin  pellets   11,250  t  C5-­‐molasses  


Straw Handling


Thermal Pretreatment


Liquefaction


Fermentation & Distillation


Kalundborg  DemonstraEon  Plant   Pretreatment

Molasses Outlet

Receiving

Lignin Outlet

Ethanol Outlet

Input:         30,000  t  wheat  straw    Enzyme  suppliers:    Genencor,  Novozymes  

  Investment:   EUR  ~  60  mill.,   EUR  ~  10  mill.  DK  gov't  support     Supported  with  mEUR  9,1  by  EU  7th  FP  –  KACELLE  project    

Enzymatic Liquefaction

Distillation

Fermentation

Output:   5.4  mill.  liters  ethanol   13,100  t  lignin  pellets   11,250  t  C5-­‐molasses  


Bioetanol  2G  is  actually  sold  in  Denmark  !   STATOIL sells Bio95 2G (Petrol 95% + 5% Bioethanol 2G)


Inbicon  Process  

Input:  30  000  ton  wheat  straw   ConQnuous  operaQon  unQl  final  of  fermentaQon   process  

High  dry  maper  in  pretreatment   (35%)  and  hydrolysis  (25%  WIS)  

Pretreatment  

HE  

Separação  S/L  

Ferm.  C6   ENZIMAS  

WHEAT   STRAW   ENZIMAS  

LEVEDURA  

LIQUIDOS  C5  

-­‐ Non-­‐sterile   -­‐ Near-­‐zero  effluents   -­‐ IntegraEon  (key  technology)  

Concentração  

DesEl.  &    RecEf.  

MELAÇOS  C5   steam  

FEED   LENHINA  

42  

Power  Plant  

BIOETHANOL    99,8%   Yield  of  ethanol  >  180  l  EtOH/ton  straw  (86%  DM)  


INBICON  –  Integrated  bioethanol  biorefinery   However….this  is  sQll  the  Bioethanol  Biorefinery  Current  Stage  (Inbicon  Proces)   Up to 25% of carbohydrate content remains unconverted ! C5-­‐rich  fracQon  

Other biorefinery products   More ethanol  


PROETHANOL2G Integration of Biology and Engineering into an Economical and Energy-Efficient 2G Bioethanol Biorefinery

Inbicon  DemonstraQon  Plant,   Kalundborg,  Denmark  

Project  Overview  

Francisco  Gírio   EU  Project  Coordinator  

www.proethanol2g.org


The  EU  Project  overview  for  a     full  integrated  bioethanol  biorefinery  


INBICON  –  A  future  integrated  biofuel  biorefinery   Pentoses  Technology  

46  


INBICON  –  A  future  integrated  biofuel  biorefinery   SSCF  Technology  


INBICON  –  A  future  integrated  biofuel  biorefinery   CBP  Technology  


PROETHANOL2G  –  IntegraQng  the  wastewaters   Palha  de  Trigo   ou   Bagaço/Palha   de  Cana  

Pré-­‐tratamento   Sólidos  Residuais   (incl.  Lenhina)   Biomassa   pré-­‐tratada  

Águas   Residuais  

Hidrólise   EnzimáEca  

Pilhas  de   Combus|veis  

Fermentação  

Gasificação  

Recuperação/ Purificação   de  Lenhina  

Gás  de  síntese  

SS(C)F   Caldo   FermentaEvo   DesElação   (a  baixa  temperatura)  

Fermentação  

Bioetanol  2G  

Electricidade  

Produtos  à   base  de  Lenhina  


Microbial  Fuel  Cells    

ü   Convertem  a  energia  química  

disponível  nos  substratos   orgânicos  diretamente  em   eletricidade.     ü   Conceito  mais  comum:  

1 º   O x i d a ç ã o   d o s   c o m p o s t o s   orgânicos   no   ânodo,   com   produção   de  eletrões  e  protões;     2º   No   cátodo,   o   oxigénio   reage   com   os   protões   transportados   através   da   membrana   e   com   os   eletrões   provenientes   do   circuito   externo   para  produzir  água.    

(Lovley,  2006)  


Microbial  Fuel  Cells   A   aplicação   mais   estudada   e   consensual   para   MFCs   está   no   tratamento   energeQcamente   eficiente   de   águas  residuais.  

(LNEG  2010)  

Implementação  à  escala  industrial,   ainda  sujeita  a  limitações   económicas  e  técnicas.   (Instalação  Piloto     Advanced  Water  Management  Centre   Foster's  brewery,  Queensland  (Australia))  


PROETHANOL2G:  IntegraQng  spent  lignins   Palha  de  Trigo   ou   Bagaço/Palha   de  Cana  

Pré-­‐tratamento   Sólidos  Residuais   (incl.  Lenhina)   Biomassa   pré-­‐tratada  

Águas   Residuais  

Hidrólise   EnzimáEca  

Pilhas  de   Combus|veis  

Fermentação  

Gasificação  

Recuperação/ Purificação   de  Lenhina  

Gás  de  síntese  

SS(C)F   Caldo   FermentaEvo   DesElação   (a  baixa  temperatura)  

Fermentação  

Bioetanol  2G  

Electricidade  

Produtos  à   base  de  Lenhina  


Obrigado/Gracias   /Thank  you                 francisco.girio@lneg.pt  


Francisco Girio - Portugal_Presentacion Foro