06 PANIAGUA BIOLOGIA 3 06
278
29/11/06
13:37
Página 278
BIOLOGÍA CELULAR
Disminución de cAMP Noradrenalina Adrenalina ClK
Aumento de cAMP Hormona melanotrífica ClNa Gránulos de melanina Microtúbulos
A
Transporte centrífugo Quinesina
B
(–)
Transporte centrípeto Dineína citoplásmica
Microtúbulo
(+)
Figura 6.33. A: Transporte bidireccional de gránulos de melanina en los melanóforos. Los cambios en las concentraciones de ClNa, ClK, cAMP y algunas hormonas inducen un rápido desplazamiento de los gránulos hacia el cuerpo celular o hacia las proyecciones citoplásmicas. B: El movimiento es el resultado de la competencia entre la quinesina y la dineína, con ventaja de la primera en el transporte centrífugo, y de la segunda en el centrípeto.
Exocitosis, endocitosis y tráfico de vesículas
Formación de la pared celular
Las vesículas de secreción viajan desde el complejo de Golgi hasta la membrana plasmática, con la que se fusionan, produciéndose la exocitosis de la secreción. Este transporte es, en lo esencial, como el transporte axónico, con intervención de los microtúbulos y la quinesina. En las células con secreción regulada, como las células B de los islotes pancreáticos, los agentes que inhiben la tubulogénesis frenan la secreción, aunque tardan un tiempo en hacerlo. La secreción inicialmente liberada es la de aquellas vesículas que ya se encontraban bajo la membrana plasmática en el momento de ser administrados los fármacos inhibidores del transporte. Ello se debe a que los microtúbulos son responsables del transporte, pero no intervienen en la fusión de las vesículas con la membrana plasmática o con otras vesículas. En esta fusión intervienen otros componentes celulares (véase página 64). Los microtúbulos no intervienen en la secreción de lípidos y derivados lipídicos, ya que éstos se difunden por el hialoplasma y no viajan en vesículas. La endocitosis, que es el proceso inverso a la exocitosis, está sujeta a los mismos mecanismos. Los microtúbulos no intervienen en la formación de las vesículas de endocitosis por invaginación de la membrana plasmática, sino en el transporte de estas vesículas por el interior de la célula. Experimentalmente, se ha visto que los agentes inhibidores de la tubulogénesis no impiden la fagocitosis de bacterias por leucocitos polimorfonucleares, pero sí la formación de fagolisosomas, porque impiden el transporte de los lisosomas hasta las vacuolas de fagocitosis.
La formación de la pared celular es un proceso de exocitosis (secreción) en el que intervienen también los microtúbulos. En células vegetales existen microtúbulos periféricos que se disponen paralelos a las microfibrillas de celulosa de la pared celular (véase página 325). Estos microtúbulos parecen controlar la orientación de estas fibrillas, sirviendo de vías de transporte orientado de las vesículas citoplásmicas que contienen los precursores de la celulosa y otros componentes de la pared. Si se destruyen los microtúbulos con colchicina se pierde la orientación de las microfibrillas. En el desarrollo del xilema se observan microtúbulos en las proximidades de los lugares donde se están produciendo los engrosamientos de la pared, lo que indica que el depósito de pared secundaria que se está produciendo también está dirigido por microtúbulos (véase Fig. 4.23.A).
TRANSDUCCIÓN DEL ESTÍMULO EN LAS CÉLULAS NEUROSENSORIALES Muchas células sensoriales epiteliales presentan pelos sensoriales, que son estereocilios con abundantes microfilamentos o cilios inmóviles. Así, las sensilas campaniformes de insectos tienen un pelo sensorial constituido por un penacho de unos mil microtúbulos dispuestos en patrón hexagonal. En su base hay un cilio carente de par central. En estas células, tanto los microfilamentos de los estereocilios como los microtúbulos de los cilios inmóvi-