2011 Energy Innovation

Page 6

Research

Hydrogen energy has the potential to make the energy conversion systems more efficient through the use of fuel cells and can significantly reduce the greenhouse gas emissions as well as eliminate the pollutant emissions from mobile and stationary sources. Hydrogen production, storage, and utilization via fuel cell systems are important research subjects in the long term.

Reduce pollution and stabilize green house gas emissions from energy utilization. Over the next 25 years, fossil fuels are expected to continue to make up about 80 percent of total primary energy use. When we consider increasing environmental stresses, including increasing CO2 emissions and industrial accidents such as the Deepwater Horizon oil spill in the Gulf of Mexico, it’s clear we need to move toward sustainable energy sources and new technologies to reduce and stabilize greenhouse gas emissions.

For the foreseeable future, fossil fuels will continue to be the dominant and the cost-effective energy resource. However, the use of more renewable resources must be emphasized even if it costs more in the near term. Nuclear energy has a potential for growth in terms of meeting the energy needs without greenhouse gas emissions and industry has been seeing a resurgence in nuclear energy. However, nuclear energy involves major challenges that have resulted in the not-in-my-back yard syndrome worldwide. This is largely related to the accidents of nuclear power plants at Three Mile Island in the U.S. on March 28, 1979, at Chernobyl in the Ukraine on April 26, 1986, and most recently at Fukushima Daichi in Japan on March 12, 2011. Capture, sequestration and utilization of CO2 from energy systems are key areas of interest because they have the potential to achieve major reductions in CO2 emissions from fossil fuel use. However, there are many issues around energy economics, policy regulations, environmental protection, and global climate change. For example, the costs for carbon capture are high, plus there are still some unknowns with carbon storage. Many of these issues are being addressed through research and development activities by countries throughout the world.

Develop sustainable and safe energy including more renewable sources. There is a long-term need to make more active use of renewable sources of energy (e.g., solar energy, biomass, wind, geothermal, wave) and design better conversion systems without negative impacts on the environment. CO2 conversion and utilization with renewable energy input for producing fuels and chemicals also have intrinsic merits for sustainable development. For the foreseeable future (the next two decades), fossil fuels will continue to be the dominant and the cost-effective energy resource. However, the use of more renewable resources must be emphasized even if it costs more in the near term. Government incentives are necessary to nurture the growth of renewable sources such as solar and biomass along with recycled energy sources such as organic wastes, which are important for sustainable energy development. Biomass provides a path for renewable sources of carbonbased energy, chemicals, and materials. Solar energy conversion via photovoltaic cells is a path that has the most energy and environmental benefits and also the potential to grow, provided that more efficient conversion devices can be made affordable. It should be noted that renewable energy utilization systems can have some negative impacts to the human and ecological environments (effects of solar energy facilities on land use; biomass growth on land area; wind power on birds; hydropower on aqua life, etc.). Nonetheless, there are also great benefits. It is a major challenge because the use of so-called renewable energy sources encounters regional distribution and seasonable availability issues as well as low energy density issues.

Develop sustainable organic material involving carbon-based feedstocks. We still need carbon-based feedstock for manufacturing chemicals and organic materials, even if the energy problem is solved. The world today depends on carbonbased chemicals and organic materials which characterize the current civilizations and shape our life style in a wide range of applications, from clothes to shoes, from kitchen to bedroom, from homes to offices, from cosmetics to automobiles, from plastic beverage bottles to gasoline tanks, from commercial buildings to manufacturing plants, from heat-resistant polymers to aerospace materials, and from computers to mobile cell phones. As the resources of fossil fuels are being consumed rapidly, we should be concerned equally for the future supplies of the feedstock for carbonbased chemicals and organic materials. Utilization of CO2 for chemicals and materials offers a long-term option. Refs. C.S. Song, Catalysis Today, 2002(77)17-50; 2006 (115) 2-32.

6

Energy Innovation


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.