On Formulations of the Pythagorean Theorem

Page 2

2

Pythagorean Theorem Roots by Parker Emmerson © 2009-2010.nb

b Ø ArcSinB

4 p r q - r q2 4 p2

SolveBArcSinB

4 p r q - r q2 4p

::r Ø

2p

H4 p - qL q

F = ArcSinB

2

F

2p

F == ArcSinB

H4 p - qL q 2p

F, rF

H4 p - qL q H4 p - qL q

>>

ü A quick calculation: 2 p r2 +

2p

4p-

r4 -r2 h2

2 p r2 +

r2

r4 -r2 h2 r2

SolveBr ==

, hF 2 p r2 +

4p-

r4 -r2 h2

2 p r2 +

r2

r4 -r2 h2 r2

88h Ø - 1<, 8h Ø 1<<

2 p r2 +

2p

4p-

r4 -r2 h2

2 p r2 +

r2

r4 -r2 h2 r2

SolveBr ==

, rF 2 p r2 +

4p-

r4 -r2 h2

2 p r2 +

r2

r4 -r2 h2 r2

8<

2p

p2 - p2 Sin@bD2

4p-2 p+

p2 - p2 Sin@bD2

2 p+

SolveBr ==

, bF 4p-2 p+

2

2

p - p Sin@bD

2

2 p+

2

2

p - p Sin@bD

1 1 ::b Ø - ArcSinB F>, :b Ø ArcSinB F>> r r

Printed by Mathematica for Students

2


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.