2 Mechanics 2.3 Motion in two and three Dimensions
Projectile motion
P2131100
Maximum range as a function of the angle of inclination for different initial velocity v0: Curve 1 v0 = 5.3 m/s Curve 2 v0 = 4.1 m/s Curve 3 v0 = 3.1 m/s
Principle
Ballistic Unit
A steel ball is fired by a spring at different velocities and at different angles to the horizontal. The relationships between the range, the height of projection, the angle of inclination,and the firing velocity are determined. Tasks 1. To determine the range as a function of the angle of inclination. 2. To determine the maximum height of projection as a function of the angle of inclination. 3. To determine the (maximum) range as a function of the initial velocity. What you can learn about ▪ Trajectory parabola ▪ Motion involving uniform acceleration ▪ Ballistics
For demonstrating projectile motion and for quantitative investigation of the laws of projection, in particular for determining the range of a projectile as a function of the projectile angle and the initial velocity of the projectile. Benefits ▪ The catapult included in the extent of delivery can be used to: ▪ achieve reproducible projectile ranges up to 3 m (scatter of the projectile ranges approx. 1%) ▪ set a continuously variable projection angle between 0° and 90°- to select three projection speeds ▪ use two balls with different masses but with the same diameter Equipment and technical data
Main articles Ballistic Unit Two-tier platform support Speed measuring attachment Power supply 5 VDC/2.4 A withDC-socket 2.1 mm Barrel base PHYWE Meter scale, demo. l=1000mm Recording paper, 1 roll,25 m Steel ball, d = 19 mm
Function and Applications
11229-10 02076-03 11229-30
1 1 1
13900-99 02006-55 03001-00 11221-01 02502-01
1 1 1 1 2
▪ with catapult and fixed storage for two balls d = 19 mm (wooden ball with iron core and steel ball 02502.01), ▪ dimensions 60 cm×38 cm 11229-10
PHYWE Systeme GmbH & Co. KG · www.phywe.com 31