7 Quantum Physics 7.8 Zeeman effect
P2511001
Zeeman effect with an electromagnet and optical bench
Screenshot of software used to measure the diameters of the interference rings as captured by the CCD-Camera.
Main articles Principle The "Zeeman effect" is the splitting up of the spectral lines of atoms within a magnetic field. The simplest is the splitting up of one spectral line into three components called the "normal Zeeman effect". In this experiment the normal Zeeman effect as well as the anomalous Zeeman effect are studied using a cadmium spectral lamp as a specimen. The cadmium lamp is submitted to different magnetic flux densities and the splitting up of the cadmium lines (normal Zeeman effect 643.8 nm, red light; anomalous Zeeman effect 508,6nm, green light) is investigated using a Fabry-Perot interferometer. The evaluation of the results leads to a fairly precise value for Bohr's magneton. Tasks 1. Using the Fabry-Perot interferometerand a selfmade telescope the splittingup of the central line into differentlines is measured in wave numbers as a function of the magnetic flux density. 2. From the results of point 1. a value for Bohr's magneton is evaluated. 3. The light emitted within the direction of the magnetic field is qualitatively investigated. What you can learn about ▪ ▪ ▪ ▪ ▪ ▪
Bohr's atomic model Quantisation of energy levels Electron spin Bohr's magneton Interference of electromagnetic waves Fabry-Perot interferometer
excellence in science 198
Fabry-Perot interferometer Electromagnet w/o pole shoes Cadmium lamp for Zeeman effect Variable transformer, 25 VAC/ 20 VDC, 12 A Power supply for spectral lamps Sliding device, horizontal Rot.table for heavy loads Pole pieces, drilled, conical Optical profile-bench, l 1000mm Capacitor,electrolyt.,22000 µF
09050-02 06480-01 09050-20 13531-93 13662-97 08713-00 02077-00 06480-03 08282-00 06211-00
Related Experiment Zeeman effect with an electromagnet and CCD camera including the measurement software P2511005
1 1 1 1 1 1 1 1 1 1