B10l061a c3lular pania6a 3 ed

Page 388

08 PANIAGUA BIOLOGIA 3 08

374

29/11/06

13:52

Página 374

BIOLOGÍA CELULAR

una edad muy avanzada. En la ovogénesis, la meiosis puede iniciarse muy pronto (en los mamíferos incluso en el período embrionario) y ser muy larga, terminando siempre en la edad adulta. Esto se debe a que, en general, es el óvulo el que, además del material genético, aporta el citoplasma del futuro embrión, mientras que el espermatozoide sólo aporta el material genético y el centríolo. Por eso, los testículos suelen producir muchos más espermatozoides que óvulos el ovario, ya que cada óvulo es potencialmente un futuro embrión, lo que no ocurre con el espermatozoide, pues muchos espermatozoides deben competir para asegurar que uno de ellos llegue a fecundar al óvulo. El desarrollo más lento de los óvulos y su menor número están relacionados con el considerable tamaño que esta célula adquiere (varios milímetros en anfibios) y con el almacenamiento de vitelo nutritivo para el desarrollo del embrión. Los citos de segundo orden realizan la segunda división meiótica dando lugar a las espermátidas (en la espermatogénesis) o a las ovótidas (en la ovogénesis). Las espermátidas son gametos indiferenciados que deben sufrir modificaciones morfológicas y funcionales (espermatogénesis) para convertirse en espermatozoides. El núcleo se condensa, almacenando en poco volumen el material genético. El citoplasma se modifica para facilitar el desplazamiento hacia el óvulo (desarrollo del flagelo) y la fecundación (formación del acrosoma con enzimas que permitan atravesar la membrana vitelina del óvulo). En la espermatogénesis, cada espermatocito primario da lugar a cuatro espermatozoides. En cambio en la ovogénesis, aunque cada ovocito primario origina dos ovocitos secundarios, sólo sobrevive uno de ellos, el cual acumula casi todo el citoplasma; el otro ovocito (prácticamente un núcleo) se denomina primer corpúsculo polar y degenera. El ovocito secundario realiza la segunda división meiótica y da lugar a una ovótida (que acumula todo el citoplasma) y a un segundo corpúsculo polar que también degenera. El término óvulo, que no tiene equivalente en el sexo masculino, designa la célula femenina dispuesta para la fecundación. Suele ser el ovocito de primer orden o el de segundo orden, según las especies, y la meiosis se completa entonces después de la fecundación.

PRIMERA DIVISIÓN MEIÓTICA En la interfase, durante el período S, la célula germinal que va a sufrir la meiosis ha duplicado su DNA como en cualquier interfase premitótica. Sin embargo, en el período G2 tiene lugar algún fenómeno por el que la célula se dirige hacia la meiosis en vez de hacia la mitosis. En algunas plantas se ha observado que se sintetiza un nuevo tipo de histona que se añade a las habituales. La profase no coincide con la mitótica. Es muy larga y durante ella los cromosomas homólogos se aparean íntimamente, al tiempo que se acortan y se intercambian material genético. Las etapas en que se desglosa este proceso son leptoteno, cigoteno, paquiteno, diploteno y diacinesis (Figs. 8.27 y 8.28).

PRELEPTOTENO Para algunos autores corresponde al período G2 del ciclo. A veces se observa una contracción de los cromosomas hasta el punto de que se observan individualizados (en seres humanos y otros mamíferos), pero luego hay una desespiralización volviéndose a la estructura del principio. En general, en el preleptoteno los cromosomas son todavía muy delgados y difíciles de observar (Fig. 8.28.A).

LEPTOTENO Los cromosomas son más delgados y largos que en la mitosis (Fig. 8.28.B). A veces pueden contarse, aunque con mucha dificultad. En ellos se observan varios engrosamientos densos, denominados cromómeros. Corresponden a regiones de condensación del DNA e histonas, mediante plegamientos no muy bien conocidos. Los cromómeros permanecerán hasta la constitución del cromosoma, pero entonces ya no se distinguirán bien, pues los diversos plegamientos de la cadena de nucleosomas harán que las cromátidas queden cada vez más densas y no destacarán los cromómeros. En los cromosomas totalmente configurados, algunos cromómeros parecen corresponder a las zonas teñidas con las técnicas de bandas. Cada cromosoma consiste en dos cromátidas íntimamente unidas (véase Fig. 8.27), pero esto sólo puede detectarse con el microscopio electrónico, con el que se ve un eje que correspondería a la línea de separación de las cromátidas. Los cromómeros coinciden en ambas cromátidas, quedando apareados; por eso resaltan con el microscopio óptico. Los cromosomas suelen estar polarizados y, aunque no se puede generalizar, frecuentemente adoptan una disposición peculiar denominada bouquet: asas cuyos extremos se unen a la envoltura nuclear en un punto cercano a los centríolos mediante una estructura especializada llamada placa de unión. Con el microscopio electrónico no se aprecia bien el recorrido de los cromosomas, pues todos quedan seccionados en un plano de escaso grosor. En comparación con las imágenes ultraestructurales de la interfase, la cromatina muestra grumos pequeños y numerosos, que corresponden a secciones de los cromosomas. Al final del leptoteno se produce la lateralización de los elementos axiales que unen las dos cromátidas hermanas apareadas en cada cromosoma (Fig. 8.29). Como consecuencia de ello se facilita el apareamiento de cromosomas homólogos en el cigoteno, proporcionando los elementos laterales del complejo sinaptonémico que se describirá a continuación.

CIGOTENO El apareamiento mencionado en el leptoteno tenía lugar entre las cromátidas hermanas. Ahora comienza un apareamiento entre cromosomas homólogos (véanse Figs. 8.27 y 8.28.C). Algunas veces los cromosomas homólogos empiezan a unirse por sus extremos polari-


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
B10l061a c3lular pania6a 3 ed by PEREZ LUNA JOSE LUIS - Issuu