B10l061a c3lular pania6a 3 ed

Page 288

06 PANIAGUA BIOLOGIA 3 06

274

29/11/06

13:36

Página 274

BIOLOGÍA CELULAR

basales de los cilios (iguales a los centríolos), los cinetócoros de cromosomas, y los poros de la envoltura nuclear o de las laminillas anilladas. En los MTOC hay tubulina γ, que forma un complejo en anillo desde donde se nuclean los microtúbulos. En cierto sentido, los propios fragmentos de microtúbulos podrían considerarse centros organizadores. La elongación del microtúbulo es más rápida que la nucleación, y tiene lugar mediante la incorporación de dímeros a los extremos de los microtúbulos (véase Fig. 6.28.A). Para poder incorporarse a los microtúbulos, los dos monómeros de los dímeros de tubulinas libres deben unirse a GTP. Al incorporarse, el GTP de la tubulina β se hidroliza a GDP. El GTP de la tubulina α queda atrapado entre los dímeros y no se hidroliza ni intercambia nunca. Los microtúbulos crecen principalmente por uno de sus extremos, denominado extremo (+), por el que se alejan del centro organizador. También se produce algún crecimiento (tres veces más lento) en el extremo (–), que queda en contacto con el centro organizador. Esto implica que, durante la elongación de los microtúbulos, en el extremo (+) hay siempre muchas tubulinas β unidas a GTP, pues las moléculas no tienen tiempo de hidrolizarse antes de que se incorpore la siguiente. En el extremo (–) las tubulinas β tienen tiempo de hidrolizarse, por lo que casi todas ellas están unidas a GDP. Tras la formación del microtúbulo tienen lugar dos cambios en las tubulinas: acetilación de algunas lisinas y desprendimiento de tirosinas en el extremo carboxilo. Estos cambios (maduración del microtúbulo) son lentos y permiten calcular cuánto tiempo ha transcurrido desde que se formó un microtúbulo. La despolimerización del microtúbulo no requiere gasto de energía. Las tubulinas desprendidas quedan como estaban en el microtúbulo (tubulina α-GTP y tubulina β-GDP) pero, antes de incorporarse de nuevo a un microtúbulo, debe producirse la fosforilación de la tubulina β. En las células diferenciadas, los microtúbulos pueden estar estabilizados, como ocurre con el axón, los centríolos y los cilios. En las células en reorganización morfológica, los microtúbulos están ensamblándose y desensamblándose continuamente; es el caso del huso mitótico. La concentración de tubulina con la cual se equilibran la polimerización y despolimerización se llama concentración crítica. La vida media de la tubulina es de unas 20 horas. En el citoplasma existe un almacén de tubulinas, que provienen tanto de nueva síntesis como de la despolimerización de microtúbulos. El siguiente experimento muestra la disponibilidad de los dímeros. El alga Chlamydomonas posee dos flagelos; si se corta uno de ellos, éste se regenera. Inicialmente la regeneración se hace a costa del otro flagelo, que va disminuyendo de longitud, añadiendo tubulinas al hialoplasma, desde donde se incorporan al flagelo en regeneración. No obstante, no todo se consigue a partir del flagelo no seccionado. Si se inhibe la síntesis de tubulinas con cicloheximida, la regeneración sólo alcanza la mitad del flagelo. Esto indica que, mientras se está regenerando el flagelo seccionado, está teniendo lugar una síntesis de tubulinas que empiezan a

estar disponibles cuando el flagelo no seccionado deja de suministrar tubulinas y se puede completar la regeneración. Sin embargo, este modelo de regeneración no es constante en todos los casos. Así, en Tetrahymena, aunque se inhiba la síntesis de tubulinas con cicloheximida, si se corta un flagelo, éste se regenera a partir de las tubulinas preexistentes en el citoplasma.

AGENTES QUE REGULAN LA FORMACIÓN DE MICROTÚBULOS Agentes que favorecen la formación de microtúbulos El agua pesada y el taxol (sustancia extraída de la corteza del tejo) incrementan el número y la estabilidad de los microtúbulos (como los del huso mitótico), e incluso la producción de centríolos. Los policationes, la RNAasa, la insulina y el factor de crecimiento nervioso (NGF) también favorecen la formación de microtúbulos. Sin embargo, algunos de estos factores dan lugar a la formación de microtúbulos anormales. Así, el policatión DEAE (dietil-amino-etildextrano) y el glicerol favorecen la formación de láminas de protofilamentos, pero dan lugar a microtúbulos de doble pared (como los anillos dobles pero en microtúbulos enteros). El exceso de Ca2+ origina la formación de microtúbulos abiertos en forma de C. Con una concentración 1 mM de Cl2Ca se forman supermicrotúbulos (de 31-52 nm de diámetro), que pueden ser completos o de pared incompleta, en la que los protofilamentos se disponen en hélice.

Agentes que impiden la polimerización de microtúbulos La colchicina es un derivado del tropoleno. Se extrae del cólquico (Colchicum autumnale) y puede también sintetizarse. Esta sustancia se usaba ya en el siglo XVIII para curar la gota. En el siglo XX se observó que alteraba la mitosis de células animales y vegetales. Además, se comprobó que causaba alteraciones en el sistema nervioso y variaciones hormonales no explicadas. La colchicina influye también en la pérdida de la forma y motilidad celular, fenómenos todos ellos en los que hoy se sabe que intervienen los microtúbulos. La colchicina actúa fijándose a cada dímero de tubulinas. Esta fijación impide que los dímeros se ensamblen. Al evitar la polimerización de tubulinas, la colchicina disocia aquellos microtúbulos que están en un continuo proceso de organización y desorganización, como los del huso mitótico, pero no los que forman estructuras estables (cilios y flagelos). Los microtúbulos de los axones son más resistentes a la colchicina que los de otras células, ya que forman estructuras más estables. Existe una amplia variedad de sustancias antagonistas de la colchicina que disminuyen sus efectos o hacen que las células se recuperen de dichos efectos: el ATP, la


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
B10l061a c3lular pania6a 3 ed by PEREZ LUNA JOSE LUIS - Issuu