03 PANIAGUA BIOLOGIA 3 03
29/11/06
12:53
Página 115
CAPÍTULO 3: ESTRUCTURA Y EXPRESIÓN GÉNICA
ganizadora. Sin embargo, la aparición de cuerpos prenucleolares no se inhibe; solamente la fusión de éstos. Si no existe región organizadora en un núcleo (p. ej., como resultado de mitosis desequilibradas, de anafases tripolares o multipolares), no se asiste a la neoformación del nucléolo, quedando los cuerpos prenucleolares libres en el núcleo. Muy tardíamente éstos se fusionan también, originando cuerpos mayores que, sin embargo, se distinguen de los verdaderos nucléolos por su ultraestructura diferente (regiones fibrilares y granulares segregadas) y por su carencia de funcionalidad (determinada por su incapacidad de incorporar uridina tritiada).
OTRAS CONDUCTAS DEL NUCLÉOLO DURANTE LA DIVISIÓN CELULAR Existen ciertas conductas atípicas del nucléolo, que no obedecen a tratamientos o anomalías funcionales sino que se presentan en casos particulares. Las que mejor se conocen son las siguientes:
115
1. El nucléolo no desaparece en la profase y queda visible como un cuerpo redondeado en metafase. Este nucléolo no suele terminar en ninguno de los núcleos telofásicos hijos y permanece flotando en el citoplasma hasta que desaparece. Este caso se presenta en la primera y segunda división meiótica de algunos ascomicetos, como los del género Neotiella, y tras el tratamiento con fluorouracilo de algunas células animales en cultivos. 2. Los cuerpos prenucleolares aparecen en el citoplasma. Esto ocurre en la telofase de la primera y segunda división meiótica de algunas plantas, como Allium y Lilium. Aparentemente, el material prenucleolar se produce en los organizadores nucleolares de los cromosomas antes de la reorganización de la envoltura nuclear. El tratamiento a unos 35-40 °C durante pocos minutos también provoca la aparición de cuerpos prenucleolares citoplásmicos, debido posiblemente a que el choque térmico impide transitoriamente la neoformación de la envoltura nuclear.
ENVOLTURA NUCLEAR CISTERNA PERINUCLEAR La envoltura nuclear consta de una doble membrana, externa e interna, entre las cuales queda un espacio de 25-40 nm, que constituye la llamada cisterna perinuclear (véanse Figs. 3.1, 3.42-3.44). Ésta posee características similares a las del retículo endoplasmático rugoso, como la composición, la estructura trilaminar, el espesor, y hasta las mismas enzimas y funciones. La membrana externa de la envoltura puede tener ribosomas adheridos. En células embrionarias, o después de la mitosis, se observa continuidad entre la envoltura nuclear y el retículo endoplasmático rugoso, lo que hace suponer una estrecha relación entre ambos. Se ha sugerido que, al aparecer el retículo endoplasmático en los eucariotas, éste envolvió la cromatina formando la envoltura nuclear. La envoltura nuclear desaparece durante la mitosis y reaparece al final de ésta. Se considera que, en la telofase, el retículo endoplasmático rugoso contribuye a la formación de la envoltura nuclear de ambas células hijas, junto con los fragmentos membranosos en que quedó disgregada la envoltura nuclear de la célula madre en la profase.
LÁMINA NUCLEAR La membrana interna de la envoltura nuclear presenta, adosado a su cara más interna, material denso que la separa de la cromatina densa periférica (véase Fig. 3.1.B). Es la lámina nuclear o lámina fibrosa, de estructura semejante a una malla fibrosa y con un espesor de 15 a 80 nm.
La lámina nuclear comprende tres polipéptidos principales denominados lámina A (72 kDa), lámina B (dos subtipos: B1 de 65 kDa y B2 de 78 kDa) y lámina C (62 kDa). Las láminas B se expresan ya desde el embrión; ambos subtipos (B1 y B2) son muy similares, pero están producidos por genes diferentes. Las láminas A y C son productos alternativos del mismo gen y sólo se expresan en tejidos adultos. Las láminas nucleares presentan una alta homología, en su secuencia y estructura molecular, con los filamentos intermedios, entre cuyas variedades se incluyen (véase página 263). Las moléculas de lámina B forman dímeros, que poseen un dominio en forma de varilla y cabezas globulares en un extremo. Estos dímeros se sitúan unos a continuación de otros, y se disponen antiparalelamente a otros dímeros para formar tetrámeros (Fig. 3.42). Las láminas A y C se combinan ntre si para formar dímeros y tetrámeros que se organizan como los de las láminas B. Los tetrámeros de láminas A-C se intercalan entre los de láminas B. Esta organización de las láminas configura una malla cuadrangular de filamentos, a diferencia de lo que ocurre con los filamentos intermedios típicos, que forman haces. La lámina nuclear va asociada a proteínas que la interconectan tanto con la envoltura nuclear como con la cromatina subyacente (Fig. 3.42). Entre estas proteínas destacan las LAP (proteínas asociadas a la lámina nuclear), que comprenden varias isoformas. Además, se conocen las proteínas LBR (receptor de la lámina nuclear), emerina, MAN1 y otefina. La disposición de estas proteínas parece indicar que las láminas guían las interacciones de la cromatina con la envoltura nuclear y contribuyen a la organización espaciada de la cromatina, permitiendo su replicación.