analyse numerique

Page 19

12

2 • Matrices

CORRIGÉS DES EXERCICES 2.1 Premiers calculs 1.

Inversion ⎞ 1 −2 4 . . . (−2) j−1 . . . (−2)n−1 ⎜0 1 −2 4 ... . . . (−2)n−2 ⎟ 2 0 ... 0 ⎟ ⎜ .. .. ⎟ ⎜ .. .. .. .. ⎟ . . . . . 1 2 0 .⎟ ⎜ ⎟ ⎟ ⎟ ⎜ . .. .. .. ⎟ ⎟ ⎜ . j−i n−i . . . 0⎟ × ⎜ . . . . (−2) ⎟ = I . 0 1 (−2) ⎟ ⎟ ⎜ .. .. .. .. ⎟ . . . . 0 1 2⎠ ⎜ ⎟ ⎜ ⎝ 0 1 −2 ⎠ 0 ... ... 0 1 0 ... 0 0 1

⎛ 1 ⎜ ⎜0 ⎜. ⎜. ⎜. ⎜. ⎝ ..

Matrice triangulaire inversible Si A = (ai, j ) est inversible et triangulaire supérieure, ses coefficients diagonaux sont non nuls. 2.

Notons A

−1

n

= B = (bi j ). Puisque B A = I , nous avons

bi,k ak, j = di j . Remarquons que k=1

puisque la matrice est triangulaire supérieure, ak, j = 0 si k > j si bien que j

bi,k ak, j = di j .

(2.1)

k=1

Nous allons montrer par récurrence sur j que bi j = 0 si i > j et b j j = 1/a j j . Pour j = 1, (2.1) devient bi,1 a1,1 = di1 qui permet d’obtenir bi,1 = 0 si i = 1 et b1,1 = 1/a1,1 . Supposons que pour j donné inférieur ou égal à n − 1 et pour tout k j, bi,k = 0 dès que i > k. Pour i > j + 1, bi,k = 0 pour k = 1, . . . , j, si bien que (2.1) bi, j+1 a j+1, j+1 = di j+1 . Comme a j+1, j+1 = 0, on en déduit que bi, j+1 = 0 si i > j + 1 et b j+1, j+1 = 1/a j+1, j+1 . Ce qui achève la démonstration. Inverse d’une matrice et valeurs propres Si l est une valeur propre de A de vecteur propre associé V , alors AV = lV . Si A est inversible, on multiplie cette équation à gauche par A−1 , il vient V = A−1 lV = lA−1 V . Puisque l est non nul, on divise par l et on obtient que V est vecteur propre de A−1 pour la valeur propre 1/l. 3.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.