Energy and the Earth Innovative Research 2010

Page 24

Hydrologic Cycle Chemistry and Geochemistry

Water interactions — on land, in the atmosphere and below the surface

Taking on water A

ttracted by the school’s collaborative environment, Reed Maxwell came to Mines last year after working the previous decade at Lawrence Livermore National Laboratory. He’s an associate professor in the Department of Geology and Geological Engineering, where he researches connections within the hydrologic cycle. Taking into consideration water from beneath the ground’s surface, on the surface, and in the atmosphere and atmospheric conditions, Maxwell looks at how each component of the hydrologic cycle influences the others. He’s most concerned with solving water resource issues by better understanding the processes that govern the movement and quality of water. Because of the complexity of the issues and the many variations that must be examined, Maxwell has developed a suite of computer models that draw on novel numerical methods, parallel-processing and highperformance computing. “We’ve run computer simulations on as many as 16,000 processors. That makes the simulations somewhat more complicated because we have to coordinate all the interactions between the processors to solve these problems, which necessitate these complicated approaches,” Maxwell said, noting his team uses supercomputers from all over the world as well as Mines’ own, dubbed “Ra,” running in parallel. 24

Colorado School of Mines


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.