Biologie

Page 198

© Dunod – La photocopie non autorisée est un délit.

L’ADN support de l’hérédité

173

pneumocoques : une forme sauvage, virulente, qui donnait des colonies à surface lisse (S ou « smooth ») sur gélose nutritive et le variant R non virulent, qui proliférait sur gélose sous forme de colonies rugueuses (« rough »). Les souris ayant reçu du pneumocoque R restaient indemnes, alors que celles inoculées avec du pneumocoque S mouraient de pneumonie et de septicémie. Lorsque les pneumocoques S étaient préalablement tués par la chaleur, ils n’avaient plus d’effet pathogène sur les souris. Or l’inoculation simultanée de pneumocoques R vivants et de pneumocoques S tués déclenchait une septicémie mortelle, et l’hémoculture mettait en évidence un foisonnement de pneumocoques S. Les pneumocoques R avaient été transformés en pneumocoques S. Ce phénomène de la transformation d’une souche non virulente en souche virulente par une entité thermostable issue de la souche virulente inactivée par chauffage resta inexpliqué jusqu’au début des années quarante. En 1944, en effet, Oswald Avery (1877-1955) et ses deux assistants Colin Mac Leod (1909-1972) et Maclyn Mc Carty (naissance en 1911) démontraient que le facteur transformant soluble était l’ADN de la bactérie donatrice. Ces trois chercheurs avaient purifié à partir des pneumocoques S une substance visqueuse, de composition chimique répondant à l’ADN et où ils ne détectaient pas de traces de protéines. Cette substance ajoutée à une suspension de pneumocoques R induisait la transformation des bactéries R en bactéries S. La substance traitée avec la désoxyribonucléase perdait son activité, alors que la ribonucléase était sans effet. Cette découverte capitale reçut un accueil réservé, car à cette époque l’ADN était considéré comme une structure sans spécificité, constituée par une répétition monotone de motifs tétranucléotidiques, ce qui contrastait avec la spécificité de reconnaissance des protéines enzymatiques pour leur substrat. Ces arguments incitaient à rechercher dans les protéines plutôt que dans l’ADN le support de l’hérédité. Le rôle informatif de l’ADN dans la cellule ne fut définitivement admis qu’en 1952, avec les expériences d’Alfred Hershey (1908-1997) et de son élève Martha Chase (naissance en 1927) sur le bactériophage T2 d’E. coli. Ils montrèrent clairement que les deux composants du phage avaient des fonctions différentes. La protéine représentait l’enveloppe externe, antigénique du phage, sorte de coque destinée à protéger l’ADN du phage. Après fixation du phage à la surface de la cellule, l’ADN du phage était injecté et s’emparait de la commande génétique de la bactérie. Un deuxième processus de transfert génétique chez les bactéries fut découvert en 1946 par Joshua Lederberg et Edward Tatum : la


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.