Observación mediante contraste de fases
1.2. Microscopía electrónica
http://goo.gl/5Fg51F
Esta técnica se basa en la utilización de haces de electrones en lugar de luz. Existen distintos tipos de microscopios electrónicos. El microscopio electrónico de transmisión permite la observación detallada del interior de las células.
Fotografía de espermatozoides a cuatrocientos aumentos hecha al microscopio de contraste de fases. La observación al microscopio siguiendo las pautas anteriores implica la muerte de los tejidos. Por tanto, observamos células de las cuales no es posible distinguir las características propias de su actividad. La observación de células vivas es posible mediante el microscopio de contraste de fases. Este es un microscopio óptico que se basa en los diferentes índices de refracción que presentan las partes de una muestra transparente y sin teñir. Mediante una serie de dispositivos especiales, el microscopio de contraste de fases permite transformar las diferencias de refracción en diferencias de luminosidad. Las muestras permanecen vivas y, por ello, podemos observar los movimientos celulares y las corrientes citoplasmáticas. La incorporación de cámaras de video altamente sensibles a la luz permite grabar imágenes de las células en plena actividad. cátodo
ánodo
Prohibida su reproducción
bobinas
preparación
26
ventana de visión
imagen sobre la pantalla
Esquema de un microscopio electrónico
La sustitución de la luz por electrones proporciona un poder de resolución de hasta 10 Å; es decir, la distancia mínima entre dos puntos próximos que pueden verse separados es de 10 Å. El número de aumentos puede llegar a 106 veces, valores muy superiores a los que se consiguen con el microscopio óptico. Obtenemos las imágenes del modo siguiente: • Los electrones se producen en un filamento de tungsteno que constituye el cátodo y que está situado en la parte superior de un cilindro de unos dos metros de longitud. Para evitar que los electrones se dispersen al colisionar con las moléculas y los átomos de aire, mantenemos el vacío en el interior del cilindro. • Los electrones son atraídos hacia una placa con carga positiva, el ánodo. Entre el ánodo y el cátodo aplicamos una diferencia de potencial que aumenta la energía cinética de los electrones. • En el ánodo existe un pequeño orificio. Cuando los electrones lo atraviesan, obtenemos un haz fino de electrones. • Unas bobinas electromagnéticas actúan como lentes (condensadora, objetivo y de proyección) y enfocan el haz de electrones. Colocamos la muestra en el interior del cilindro. Al atravesar la muestra, los electrones reducen su velocidad de distinta manera según las características de la parte de la muestra que atraviesan. Finalmente, inciden sobre una pantalla fluorescente, donde producen un punto luminoso cuya intensidad es directamente proporcional a la velocidad de los electrones.