GDJ
DATA ACQuiSiTiON AND CONTROL SYSTEM The National Instruments platform selected for data acquisition and control was the CompactRIO. This platform was perfectly suited since it offered the requisite size, channel count, signal conditioning, and realtime control capabilities. The NI CompactRIO programmable automation controller (PAC) is a low-cost reconfigurable control and acquisition system designed for applications that require high performance and reliability. The system combines an open embedded architecture with small size, extreme ruggedness, and hotswappable industrial I/O modules. CompactRIO is powered by reconfigurable I/O (RIO) fieldprogrammable gate array (FPGA) technology.
SOFTWARE ARChiTECTuRE
NACA 4415 with Tuffs illustrating laminar flow
WiND TuNNEL DESiGN The tunnel hardware was designed in conjunction with NASA Glenn Research Center in Cleveland, Ohio to provide ultra-low turbulence, straight-line (laminar) air flow, permitting true aerodynamic engineering, data acquisition and analysis. FLOTEK wind tunnels bring advanced aeronautic design principles to the high school and college laboratory. The standard models are the FLOTEK 1440 wind tunnel with 12’ x 12” x 36” test section where air flow velocity can reach up to 185 mph and the Flotek 360, with a 6” x 6” x 18” test section.. The tunnel is fitted with a 20-tube manometer for enhanced visual reference with a two-component balance-beam for measurement of drag and side force. Larger custom wind tunnels will be used for student based model testing. A wind tunnel with a round test section is being developed for wind turbine blade testing.
National instruments Labview Screen developed by Viewpoint Systems used to remotely control the wind tunnel while retrieving real time data
2010 | WIND TUNNEL INTERNATIONAL
The software was written in LabVIEW Realtime and LabVIEW FPGA by Viewpoint Systems, of Rochester, New York, a Select Partner of the National Instruments Alliance program (www.viewpointusa.com). We had looked at some other solutions for remote lab control, but they didn’t provide the tight closed loop control needed for other applications we provide, such as engine dynamometers. The application allows real-time display of up to 16 readings of pressure and velocity over the test model while controlling the angle of attack and fan RPM. An airfoil stepper motor controller allows for computer control of the airfoil angle of attack from a slide bar on the Remote Panel and an additional stepper motor will be used to raise and lower a yarn streamer for visual enhancement. All sensors and control actuators are calibrated for accuracy. Operating the wind tunnels over the Internet allows access to expensive research grade equipment at a very affordable cost. Schools will not have to maintain the equipment or change models. By combining the powerful feature-set of the CompactRIO and FPGA technology and the NI Remote Panel capability, the system is able to meet the needs of STEMbased education. Educators and students from all over the world can now log-on and deliver classroom instruction with real-time data and presentation of a model wind tunnel operating without the hassle of owning and maintaining one. This system also provides an excellent opportunity for a business to provide an outreach program for their local school. A business can provide cutting edge technology to their local school with little or no actual time investment on their part. CONTACT Jack Gilbert, MechNet inc. Email: jgilbert@mech-net.com Website: www.mech-net.com 41