Elon lages lima-geometria analitica e algebra linear

Page 332

Se¸c˜ ao 47

Transforma¸c˜ oes Lineares em R3 321

Portanto, R ´e uma transforma¸c˜ao linear e sua matriz ´e r = 2p − I3 . Exemplo 47.5 (Reflex˜ ao em torno de um plano.) Seja Π um plano que passa pela origem. A reflex˜ao S : R3 → R3 em torno de Π associa a cada vetor v ∈ R3 o vetor Sv tal que Π ´e o plano mediador do segmento de reta que liga v a Sv. Noutras palavras o plano Π ´e perpendicular a esse segmento e o corta em seu ponto m´edio. Se Qv ´e a proje¸c˜ao ortogonal de v sobre Π ent˜ao v + Sv = 2Qv, logo Sv = 2Qv − v. Assim, S = 2Q − I ´e uma transforma¸c˜ao linear e sua matriz ´e s = 2q − I3 . Em conformidade com a terminologia geral referente a fun¸co˜es, uma transforma¸c˜ao linear M : R3 → R3 chama-se invert´ıvel quando existe N : R3 → R3 linear tal que MN = NM = I. Ent˜ao N chama-se a inversa de M e escreve-se N = M−1. Levando-se em conta que a matriz de MN ´e o produto das matrizes de M e N, mostra-se sem dificuldade que M ´e invert´ıvel se, e somente se, sua matriz m ´e invert´ıvel. No Exemplo 47.1, toda homotetia αI, com α 6= 0, ´e invert´ıvel e 1 (αI)−1 = α · I. Nos Exemplos 47.2 e 47.3, as transforma¸c˜oes P e Q n˜ao s˜ ao invert´ıveis, pois suas matrizes p e q, tendo colunas linearmente dependentes, n˜ao possuem inversa, segundo o crit´erio estabelecido na Se¸c˜ao 39. Outra maneira de justificar a n˜ao-invertibilidade de P e Q ´e observar que essas transforma¸c˜oes n˜ao s˜ ao injetivas: existem vetores v 6= v ′ com Pv = Pv ′ e w 6= w ′ com Qw = Qw ′ ; basta tomar v e v ′ sobre um mesmo plano perpendicular a r e w, w ′ sobre a mesma reta perpendicular a Π.


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.