15.8 Presión y velocidad
317
A partir de lo cual (4 m /s)(2 cm)‘
v\d] v2
d2 =
(20 m /s)
= V0.80 cm2 = 0.894 cm Solución (b): Para calcular el gasto, primero debemos determinar el área de la manguera de 2 cm de diámetro.
A, =
ird]
tt(2
cm)2
= 3.14 cm2
, , 1 X 10 4 m2\ = 3.14 cm2 -----:-----;---I = 3.14 1 _ 2
1 cm
, , 10~4 m2
X
El gasto es R = A {vv así que R = (3.14
X
10~4 m2)(4 m /s) = 1.26
= (1.26
X
10-3 m3/s)(60 s/min) = 0.0754 m3/min
X
10~3 m 3/s
El mismo valor debe obtenerse considerando el producto A,v,.
P ro b le m as so b re g asto
1. Lea el problema cuidadosamente, y, después de dibu jar un esquema, elabore una lista con la información proporcionada. 2. Recuerde que el gasto R representa el volumen del flui do que pasa por una determinada sección transversal por unidad de tiempo. 3. Cuando un volumen de fluido pasa de una sección transversal A, a otra A2, el gasto no cambia.
4. Puesto que el área A de una tubería es proporcional al cuadrado de su diámetro d, una forma más útil de expresar la ecuación anterior puede ser: v ¡¿ / j
—
v 2d 2
5. Las unidades elegidas para la velocidad o el diámetro en una sección de la tubería deben ser las mismas que se usen en la segunda sección de la tubería.
R = VjA] = v2A2 Asegúrese de utilizar unidades congruentes para el volu men y el área.
Presión y velocidad Hemos observado que la velocidad de un fluido aumenta cuando fluye a través de un angostamiento. Un incremento en la velocidad únicamente se puede deber a la presencia de una fuer za de aceleración. Para acelerar un líquido que entra al angostamiento, la fuerza de empuje proveniente de la sección transversal amplia debe ser mayor que la fuerza de resistencia del angostamiento. En otras palabras, la presión en los puntos A y C, en la figura 15.15 debe ser mayor que la presión en B. Los tubos insertados en la tubería sobre dichos puntos indican cla ramente la diferencia de presión. El nivel del fluido en el tubo situado sobre la parte angosta es más bajo que el nivel en las áreas adyacentes. Si h es la diferencia de altura, la diferencia de presión está dada por Pa ~ Pb = P§h
( 15 . 13 )
Esto es cierto si se supone que la tubería está en posición horizontal y que no se producen cambios de presión debido al cambio de energía potencial. El ejemplo anterior, como se muestra en la figura 15.15, muestra el principio del medidor venturi. Partiendo de la determinación de la diferencia de la presión, este dispositivo hace posible el cálculo de la velocidad del agua en una tubería horizontal.