


Inthiseditionofourmagazine,wedelveintoarangeofcompellingtopics withinthelightingindustry,emphasizingtechnologicalinnovation,health impacts,andenvironmentalsustainability.Theissuefeaturesan explorationofadvancedmicro-opticstechnologiesthatenhancethe precisionandefficiencyoflightingsystems,crucialforapplicationsin mobilityandconsumerelectronics.Thetransformativepotentialof Scan-to-BIMtechnology,facilitatedbysmartphonesequippedwithLiDAR sensors,ishighlightedforitsroleinrevolutionizingarchitecturaland lightingdesignthroughefficient3Ddataacquisitionandmodelcreation. AninterviewwithDr.JenniferVeitch,PresidentoftheCIE,provides insightsintohercareerandthestrategicdirectionoftheorganization, emphasizingtheintegrationofscientificresearchwithglobalsustainability goals.ProfessorDr.ManuelSpitschandiscussesthesignificant non-visualeffectsoflightonhumanhealth,advocatingforadvancements instandardizedlightexposuremeasurements.Additionally,ananalysisby Dr.SebastianKnocheandDipl.-Ing.MarinaProskeaddressesthe environmentalimpactsofLEDluminaires,focusingonsustainableproduct designandimprovedrecyclingprocesses.Thevibrantlightingmarketin Asiaisexaminedforitsgrowthandinnovation,reflectingtheregion’s uniquechallenges.Lastly,AdamLilienfromULSolutionsdiscussesthe developmentofcircadiantoolsthatenhancethecircadianperformanceof lightingproducts,aimingtodesignhealthierindoorenvironments.Each articlecontributesuniqueperspectivesonthecurrenttrendsandfuture directionsinlighting,highlightingtheindustry’scommitmenttoenhancing bothhumanwell-beingandenvironmentalstewardship.
Enjoyyourread!
YoursSincerely,
8 ARoadmapforLightandHealth
byProf.Dr.ManuelSPITSCHAN,Professorfor ChronobiologyandHealthattheTechnical UniversityofMunichandMaxPlanckResearch GroupLeaderattheMaxPlanckInstitutefor
20 Dr.JenniferVEITCH,PresidentofCIE compiledbyEditors,LEDprofessional
26 AdamLILIEN,GlobalBusiness DevelopmentManagerofLightingatUL Solutions compiledbyEditors,LEDprofessional
30 EnvironmentalImpactsofLED Luminaires,RecyclingPractices,and RecommendationsforaMore SustainableLightingIndustry byDr.SebastianKNOCHE,TRILUX;Dipl.-Ing. MarinaPROSKE,FraunhoferIZM
40 ThePromisingFutureofFree-form Micro-OpticsinMobilityInteriors byChristianFORSTNER,HeadofSalesat Seisenbacher
42 TheFutureofScan-to-BIMin LightingDesign byMartinHUBER,Co-Founder&CEOof MetaroombyAmrax
50 Solid-StateLightingMarketReport:ASIA byDr.J.NormanBARDSELY,ChiefAnalystat InternationalSolid-StateLightingAlliance
56 ExpertTalksonLight–TimeMatters,ShiningLightonMetabolic Health
Prof.Dr.ManuelSpitschanisthe RudolfMössbauerAssistant ProfessorforChronobiologyand HealthattheTechnicalUniversity ofMunichandaMaxPlanck ResearchGroupLeaderatthe MaxPlanckInstituteforBiological Cybernetics.Afterstudiesin psychologyattheUniversityofSt Andrews,Prof.Spitschanreceived hisPhDonmelanopsinsensitivity inthehumanbrainfromthe UniversityofPennsylvania.He completedpost-doctoraltraining atStanfordUniversity,the UniversityofOxfordandthe UniversityofBasel.Heiscurrently theSpeakeroftheDaylight AcademySteeringCommittee, andChairoftheCIEJoint TechnicalCommittee20.
www.tscnlab.org
In1980,AlLewyandhisteam discoveredthatlightexposureatnight suppressestheproductionofthe endogenoushormonemelatonin.About 20yearslater,twoteamsatThomas JeffersonUniversity,ledbyGeorge “Bud”Brainard,andattheUniversityof Surrey,ledbyDebraSkene, characterizedthewavelength dependenceofmelatoninsuppression bylight,identifyingasignaturefora non-rod,non-conephotoreceptor underlyingmelatoninsuppression. Almostatthesametime,the photopigmentmelanopsinandits expressioninasubsetofnervecellsin theretinawasdiscovered.Another20 yearslater,ateamaroundAndrew PhillipsandSeanCaincharacterized significantindividualdifferencesin melatoninsuppressioninpeople.
Thesefundamentaldiscoveriesin neurosciencehaverevolutionizedhow lightisused,conceptualized,and measuredinthebuiltenvironment. Inadditiontotheassessmentoflight exposureintermsofphotometry, α-opic radiometry(standardizedbytheCIEin theInternationalStandardCIES 026/E:2018)allowsustoestimatejust howthephotoreceptorsintheretinaare affectedbyenvironmentallight.These standardized“physiologicallyrelevant” quantities,particularlythemelanopic equivalentdaylightilluminance (melanopicEDI)areessentialforany lightingengineeringanddesign approachesputtinghumanresponsesat thecentre.
Whatshouldthefollowingyearsof researchonthenon-visualeffectsof lightlooklike?Thereareseveralkey emergingapproachesandtechnologies thatwillmovetheneedleinmakingthe sciencecountinthe“realworld”.
Thefirstoneconcernstheuseof wearablelightloggersthatallowfor measuringlightexposureinthefield.
ahttps://melidos.eu/
bhttps://tscnlab.org/podcast
chttps://doi.org/10.17605/osf.io/rxa35
IntheEURAMET-fundedMeLiDos projecta,anovelframeworkfor characterizationandcalibrationofthese lightloggersisdeveloped,andfeeds intoacurrentlyactiveCIEcommittee (CIEJTC20).Inadditiontothetechnical aspectsofthiswork,moredatasets measuringlightexposureindiverse populationsacrosstheglobewillneed tobecharacterizedtoderivebaseline measurementsoflightexposure.Sucha globalmeasurementcampaign necessarilyneedssomeharmonization ofapproaches,butonlythrough’big data’willthefieldbeabletounderstand justhowmuchlightpeoplereceive–andwhatopportunitiesforimproving theirlightexposureforoptimizinghealth outcomes.
Aseconddirectionconcernsthe appreciationofindividualdifferencesin thenon-visualeffectsoflight,and further,understandingwhichbiological, geneticandbehavioralmechanisms drivethesedifferences.Similarly, large-scalecoordinatedeffortsare neededtocreateanevidencebasethat reflectsthosewhocanbenefitfrom optimallightexposure–andthatisallofus.
Athirdareaofworkthatisofhigh priorityisthedevelopmentofeffective communicationsstrategiesforvarious stakeholders–thegeneralpublic,and alsoprofessionalgroupsthatcanuse knowledgeofthenon-visualeffectsof light.Myteamhasrecentlystartedthe podcastLightO’Clockb,andinarecent meetingIchairedinLadenburg,agroup ofinternationalexpertsagreedon developingeffectivecommunications strategiesandwroteaWhitePaperc aboutit,whichwillseeimplementation overthenextyear.
Thefollowing20yearsofresearchon theinfluenceoflightonhealthwillallow ustomovetheneedle–andmakethe neurosciencecount. ■
M.S.https://www.instrumentsystems.com
On2April2024thepositionoftheManaging DirectorpassedfromYasumasaKuboyamato Dr.YutaYamanoi,whotogetherwithCEODr. MarkusEhbrechtformthenewInstrument Systemsmanagementteam.
Dr.YutaYamanoihasdistinguishedhimself throughmorethantwodecadesof professionalexperienceinthefieldofcolor andlightmeasurementtechnology.Aftereight yearsinthedevelopmentdepartmentat KonicaMinoltaSensinginJapan,in2016he transferredtoKonicaMinoltaSensing AmericasInc.asBusinessDevelopment Manager.Inthiscapacityhealsotookover thesupportofkeyaccountcustomersinthe ITsegment.Mostrecently,hewasSenior ManagerforStrategicPlanninginLight& DisplayandColor&Appearancedivisionof KonicaMinoltaSensingBusinessUnitin Japan.AsascientistwithaPhDin“Earthand SpaceSciences”hethusdisposesof extensiveandhighlyrelevantknow-howinthe businessareaofthewholly-ownedKonica MinoltasubsidiaryInstrumentSystems.
Inhisnewrole,overthenextfewyearshewill continuetopromotethecooperationbetween theKonicaMinoltasubsidiariesoftheSensing BusinessUnitwiththeirLight&Displayand Color&Appearancedivision,whichalso includesInstrumentSystems.Dr.Markus EhbrechtwelcomesDr.YutaYamanoitohis newposition.Inthecourseoftheregular changeinthedoubleleadershipheislooking forwardtostrengtheningthecompany togetherwithDr.YutaYamanoiforthevolatile marketsituation,creatingnewaddedvaluefor thecustomers.
ThedepartingYasumasaKuboyamahasbeen ManagingDirectorofInstrumentSystemsin GermanysinceApril2023andisnowtaking overanewdepartmentinKonicaMinolta SensingbusinessunitinJapan.
InstrumentSystemsGmbH InstrumentSystemsGmbH,foundedin Munichin1986,developsandproduces high-endlightmeasurementtechnologythatis indispensableforthemanufacturersof consumerelectronics,(AR/VR)displays, mLEDwafers,VCSEL/lasersystems, automotivelightingandLED/SSLmodules.All
solutionsbenefitfromourCASseriesof high-precisionspectroradiometersthatare recognizedandinuseallovertheworld.In combinationwith2Dimagingcolorimeters, integratingspheresandgoniometersystems, theyenablehigh-precisionandaccurate measurementsintheentirerangefromUVto IR,traceabletoPTBorNIST.Today, InstrumentSystemsisoneoftheworld’s leadingmanufacturersoflightmeasurement technology.AtitsBerlinfacility,the“Optronik Line”ofproductsisdevelopedandmarketed fortheautomotiveindustryandtraffic technology.OursubsidiaryinKorea supplementstheproductportfoliowiththe “KimsoptecLine”fortheKoreanlight& displaymarket.InstrumentSystemshasbeen awholly-ownedsubsidiaryoftheKonica MinoItaGroupsince2012. ■
https://ansorg.com
AnsorgGmbHannouncedthatThorsten Cramerhasbeenleadingthecompanyasthe newCEOsinceMarch1,2024.With extensiveleadershipexperienceinthelighting industryatinternationalcompanies,Mr. Cramerbringscomprehensiveexpertisetothe management.
Asakeycornerstoneofitslong-termstrategy, AnsorgGmbHaimstoestablisha future-orientedmanagementstructure.This includesgraduallytransferringresponsibilityto anewleadershipteamcomposedof experiencedprofessionalsinsales,finance, andoperations.Thefirstphaseofthisnew managementstructurewassuccessfully initiatedin2022,appointingkeypositionsin operationsandfinancewithexperienced executives.ThorstenCramer’sappointment asCEOmarksanotherstepinthis development.Thismeasurestrengthensthe leadershipstructureofAnsorgGmbHand supportsthetargetedfurtherdevelopmentof corporatemanagement.
AnsorgGmbHwillcontinuetofocuson providinginnovativeandoutstandinglighting solutionsfortheretailindustry.“Ilookforward tocontinuingAnsorg’ssuccessstory,”said ThorstenCramer.Thecurrentmanaging directors,RudolfPützandManfredMeier,will
continuetoactivelysupportthetransitionand remainwiththecompanyasshareholdersin advisoryroles. ■
www.energy.gov/eere/buildings/buildingtechnologies-office
FirstComprehensiveFederalStrategyOutlines PathwaystoReduceEmissions90%in BuildingsSectorby2050,Reinforcing PresidentBiden’sInvestinginAmericaAgenda toLowerEnergyCosts,ImproveResilience, andTackletheClimateCrisis.
TheBiden-HarrisAdministrationreleased DecarbonizingtheU.S.Economyby2050:A NationalBlueprintfortheBuildingsSector,a comprehensiveplantoreduce greenhouse-gas(GHG)emissionsfrom buildingsby65%by2035and90%by2050. TheU.S.DepartmentofEnergy(DOE)ledthe Blueprint’sdevelopmentincollaborationwith theDepartmentofHousingandUrban Development(HUD),theEnvironmental ProtectionAgency(EPA),andotherfederal agencies.TheBlueprintisthefirstsector-wide strategyforbuildingdecarbonization developedbythefederalgovernment, underscoringPresidentBiden’s whole-of-governmentapproachtocutting harmfulcarbonemissionsandachievingthe nation’sambitiouscleanenergyandclimate goals.
“America’sbuildingsectoraccountsformore thanathirdoftheharmfulemissions jeopardizingourairandhealth,butthe Biden-HarrisAdministrationhasdevelopeda forward-lookingstrategytoslashthese pollutantsfrombuildingsacrossthenation,” saidU.S.SecretaryofEnergyJenniferM. Granholm.“Aspartofawhole-of-government approach,DOEisoutliningforthefirsttime everacomprehensivefederalplantoreduce energyinourhomes,schools,and workplaces—loweringutilitybillsandcreating healthiercommunitieswhilecombatingthe climatecrisis.”
Buildingsaccountformorethanonethirdof domesticclimatepollutionand$370billionin
annualenergycosts.ReducingGHG emissionsfrombuildingsisessentialto reachingtheBiden-HarrisAdministration’s goalofachievingnet-zeroemissionsby 2050.TheBlueprintprojectsreductionsof 90%oftotalGHGemissionsfromthe buildingssector,whichwillsaveconsumers morethan$100billioninannualenergycosts andavoid$17billioninannualhealthcosts.
OneinfiveAmericanslivesinahouseholdthat isatleastonemonthbehindonitsenergy bills,accordingtotheU.S.CensusBureau HouseholdPulseSurvey.Economically disadvantagedcommunitiesaremorelikelyto faceenergyinsecurityduetohighenergy costs.Theyarealsomorelikelytosufferfrom theeffectsofsubstandardbuildingconditions andhealth-harmingpollution.Toaddress theseinequities,theBlueprintemphasizes affordabilitythroughreducedenergyand technologycosts,aswellasmeasuresthat wouldhelpmakecommunitiesmoreresilient topoweroutagesandclimatechange-fueled extremeweatherevents.
Fourstrategicobjectives:
• Increasingbuildingenergyefficiency
• Acceleratingonsiteemissionsreductions
• Transformingtheinteractionsbetween buildingsandtheelectricitygrid
• Minimizingtheemissionsfromproducing, transporting,installing,anddisposingof buildingmaterials
Eachobjectivehasspecificperformance targetsandmarket,policy,andtechnology milestonestoreachby2035and2050. Meetingthesetargetswillrequireaccelerated deploymentofawiderangeof decarbonizationandenergyefficiency technologies.TheBlueprintoutlines coordinatedfederalactionsthatcanincrease thespeedandscalewithwhichthese solutionsaredeployed.Thoseactionsinclude fundingresearchanddevelopmenttodevelop lower-costtechnologies,expandingmarkets forlow-carbontechnologies,providingdirect fundingandfinancing,andsupportingthe developmentandimplementationof emissions-reducingbuildingcodesand appliancestandards.Inlinewiththe Biden-HarrisAdministration’seffortstohelp ensurethebenefitsofthecleanenergy transitionflowdirectlytoimpacted communities,theBlueprintalsooutlinesways thatfederalagenciescansupportstate,local, andTribaldecarbonizationobjectives.
Toachievethesegoals,DOEisfocusedon buildinginnovationsinthreepivotalareas: buildingupgrades,efficientelectrification,and smartcontrols.DOE’sapproachstrivesto advancescalabletechnologiesandinstallation solutionsforaffordable-housingresidents whileexpandingworkforcecapabilitiesatthe stateandlocallevels.
DOE’sAffordableHomeEnergyShot™,which aimstoreducetheupfrontcostofupgrading
ahomebyatleast50%andreduceenergy billsby20%withinadecade,willaccelerate progresstowardtheemissions-reduction targetsestablishedintheBlueprint.Tolearn moreaboutDOE’seffortstoimprovethe efficiencyandaffordabilityofAmerica’s buildingstock,visittheBuildingTechnologies Officehomepage. ■
DOELaunchesFinalPhaseof ItsL-PrizeLighting Competitionon
https://americanmadechallenges.org/challenges/lprize
TheU.S.DepartmentofEnergy(DOE) launchedthethirdandfinalphaseofits LightingPrize(L-Prize®)competition,aDOE American-MadeChallengedesignedtospur groundbreakinginnovation,local manufacturing,andthebenefitsofan inclusive,clean-energyeconomyfor next-generationlightingincommercial buildings.Phase3,calledManufacturing& Installation(M&I),willunfoldover16months andrewardproductionandinstallationof productsthatmeetL-Prizetechnical requirementsinreal-worldbuildings.Upto fourcompetitorsearningthemostpoints basedontechnicalanddesigninnovation,
U.S.content,production,andinstallationwill shareanawardof$10million.
“ThisfinalphaseoftheL-Prizeisprimedto showcasenext-generationlightingsolutions thatcombinehighefficacywithexceptional lightingquality,data-drivencontrol,and sustainabledesignandconstructioninreal buildings,”saidMandyMahoney,DOE BuildingTechnologiesOfficedirector.“What makesthisprizedifferentfrommanyothersis thatitwillshowcaseboththeproducts’ innovativefeatures,andalsotheirpotentialto scale.Anditrewardscompetitorsforthinking creativelyabouthowtomakethemin America.”
TheL-Prizeadvancesthestate-of-the-artin LEDlighting,encouraginginnovatorsto developadvancedluminairesandlighting systemsthatleadtotransformativedesigns, products,andimpacts.Inadditiontoits technicalinnovationgoals,theL-Prize prioritizesequity,affordability,and resilience-relatedinnovationsthatwillsupport thebroaddeploymentofwinningsolutionsto allcommunities,particularlythosewithlimited resources.
“I’mexcitedabouttheapproachtoequityin thisphaseoftheL-Prize.Itmeetsthe commitmentDOEhasmadetotheJustice40 Initiative,sothat40percentoftheoverall benefitsofcertainfederalclimate,clean energy,affordableandsustainablehousing, andotherinvestmentsflowtodisadvantaged communitieswherethey’reneededmost,” addedMahoney.
TheM&IPhasewillrecognizeteamsthatare abletotranslateinnovationsinspiredbythe L-Prizetomarketavailabilityandinstallation. TheM&IPhasehastwoseparatetracks:the LuminaireTrackandtheConnectedSystems Track.Competitorsmaysubmittothe LuminaireTrack,theConnectedSystems Track,orseparatelytobothtracks.DOEwill evaluateeachtrack’ssubmissions independently.Allentriesmustmeetthe minimumtechnicalrequirementsandbefully commerciallyavailableandphysicallyinstalled inreal-worldapplications.Entriesmust demonstratebenefitsrangingfromenergy efficiencyandlightingqualitytoconnectivity andsustainability.TheM&IPhasealso includesevaluationcriteriauniquetothis phase,includingU.S.manufacturingcontent, installation,anddeploymentstrategy.
HowtoParticipateintheL-Prize’sM&IPhase: VisittheL-Prizewebsitetoviewthecomplete competitionrequirementsandtimeline.Forms toexpressinterestinthecompetitionaredue October1,2024. ■
https://www.designlights.org/ourwork/horticultural-lighting/technicalrequirements/hort-v3-0/
Lightingandcontrolsmanufacturers, engineeringanddesignconsultants, non-profits,researchers,andindoor cultivatorsareamongstakeholdersrecently appointedhelptheDLCacceleratethe horticulturallightingindustry’sadoptionof networkedlightingsolutionsthatadvance bothcropproductionandenergyefficiency.
“Thecontrolledenvironmentagriculture industryhasgrownsteadilysincetheDLC createditsfirsthorticulturallightingtechnical requirementsandQualifiedProductsListin 2018,”DLCExecutiveDirectorandCEOTina Halfpennysaid.“Welookforwardto collaboratingwiththeseindustryexpertsas wetaketheDLC’shorticulturalprogramtothe nextstep,expandingtheroleofconnected andintegratedlightingsolutionsthatwill enhancebothenergyuseandcrop production.”
Representingtheinterestsoftheirrespective industriesratherthanindividualcompanies andorganizations,membersofthe HorticulturalLightingControlsTechnical WorkingGroupinclude:
• MikhailSagal,TSRgrow
• ErikRunkle,MichiganStateUniversity–CollegeofAgriculture&NaturalResources
• GretchenSchimelpfenig;Greenhouse Lighting&SystemsEngineering(GLASE) Consortium
• EricEisele,GrowFlux
• MarkBlonquist,ApogeeInstruments
• CristinDziekonski,Fluence
• IhorLys,Agnetix
• FrancoisR.-Moisan,SollumTechnologies
• EmmanuelWJLOomen,Hawthorne GardeningCompany
Thenine-memberpanelwillprovideinputon DLChorticulturallightingprogramupdates, creationofresources,andrelatedactivities. Moreover,astheDLCcontinuestoimprove theefficacyandqualityofhorticulturallighting eligibleforutilityincentivesandrebates,the workinggroupwillprovidetechnicaland strategicfeedbackandinputonactivitiessuch as:
• Mappingopportunitiesforhorticultural lightingcontrolsandintegratedcontrols solutionsthatsaveenergyand/oroptimize cropproduction;
• Addressingchallengesandriskstothe advancementofenergy-savingand/or production-improvingconnectedsolutions; and
• Reviewinganddevelopingresourcesthat supporttheDLC’smission,DLCefficiency programmemberobjectives,andgrower needs,includingcasestudies,grower educationandguidance,andprogram implementation.
TheHorticulturalLightingControlsTechnical WorkingGroupisexpectedtomeetquarterly. ExploretheDLCwebsiteformoreinformation abouthorticulturallightingandthe HorticulturalLightingTechnicalRequirements, andtosearchforandviewhundredsof productsontheHortQPL. ■
amsOSRAMSellsPassive OpticalComponentsAssetsto FocuslightTechnologies
www.focuslight.com/
amsOSRAM(SIX:AMS)sellsrelevantPassive OpticalComponentsassetstoFocuslight TechnologiesInc.forEUR45millionincash.
“Withourstrategicefficiencyprogram ‘Re-establishtheBase’,wehavepromisedas onekeyelementtoexitthenon-coreportfolio inoursemiconductorbusiness.Nowwe deliveranotherimportantstepandannounce thesaleofrelevantPassiveOptical ComponentsassetstoFocuslight TechnologiesInc.,whoisanexcellenthome forthem.amsOSRAMcontinuesexecuting its‘Re-establishtheBase’programaccording toplan,”saidAldoKamper,CEOofams OSRAM.
Executingthe‘Re-establish-the-Base’ Program
OnJuly27th,2023,thecompanyannounced its‘Re-establishtheBase’program,focusing onitsprofitablecoreasanewbasefor sustainable,profitablegrowth.
Intermsofportfoliomeasuresaimedatexiting certainnon-corebusinessesinthe semiconductorportfolio,thecompanyhad prioritizedthecarve-outofthePassiveOptical Componentsbusiness.
amsOSRAMsignedanagreementwith FocuslightTechnologiesInc.(Focuslight–NeverStopExploring),afast-growing companyinopticaltechnologies, headquarteredinXi’an(China)andlistedon thestockexchangeinShanghai(China),for thesaleofrelevantassetsofitsPassive OpticalComponentsbusiness.Focuslight TechnologiesInc.agreedtoacquirethose assetsforEUR45millionincash.The transactionissubjecttoclosingconditions whichincludeapprovalsbytheshareholders ofFocuslightTechnologiesInc.andChinese regulatoryauthorities.Itisexpectedtoclose inthethirdquarter2024.
Theexistingbusinessinopticalcomponents forConsumerapplications,generatingaround EUR50millionofrevenuesin2023and phasingoutin2024,isnotpartofthe transaction. ■
LumiledstoSellitsLamps andAccessoriesBusinessto FirstBrandsGroup
https://lumileds.com
Lumileds,LLC,oneoftheworld’sleadingLED manufacturersandsolutionprovidersforthe globalautomotive,illumination,display,and flashmarketsandFirstBrandsGroup,LLC (“FirstBrands”),aglobalautomotiveparts
manufacturerthatservestheworldwide automotiveaftermarket,haveenteredintoan agreementforFirstBrandstoacquirethe LampsandAccessoriesbusinessofLumileds for$238M.UnderFirstBrands,theLamps andAccessoriesbusinesswillcontinueto expanditsglobalofferingsandpositionits productsandleadingbrandsinthe automotiveaccessoriessector.
“TheautomotiveOEMlightinggo-to-market synergiesandconditionsthatmadetheunion ofLumiledsandPhilipsautomotivelighting businesssocompellingnearlyadecadeago havechangedastransportation manufacturershaveadoptedLEDsastheir standardlightsourceandtraditional automotivelightsourceshavetransitionedto primarilyanautomotiveaftermarketbusiness,” saidSteveBarlow,LumiledsCEO.“Our LampsandAccessoriesandourLED businessesareindustryleadersintheir respectivemarketsandwillbefreetofocuson theongoinggrowthoftheiruniquebrands, channels,andcustomers.”
Thesaleisexpectedtocloseinthe2nd calendarquarterof2024.
Aspartoftheacquisition,Lumileds automotivelampsfactoriesinChina, Germany,andPolandwilltransferwiththe LampsandAccessoriesbusiness.Lumileds willretainitsfactoriesandsitesinThe Netherlands,UnitedStates,Malaysia, Singapore,GermanyandJiaxingChina.
CitiactedasfinancialadvisorandDLAPiper actedaslegaladvisortoLumileds.
AboutLumileds:Lumiledsisagloballeaderin OEMandaftermarketautomotivelightingand accessories,cameraflashformobiledevices, MicroLED,andlightsourcesforgeneral illumination,horticulture,andhuman-centric lighting.Ourapproximately5,500employees operateinover30countriesandpartnerwith ourcustomerstodeliverneverbeforepossible solutionsforlighting,safety,andwell-being. Learnmoreathttps://lumileds.com.
AboutFirstBrands:FirstBrands™isaglobal automotivepartscompanythatdevelops, marketsandsellspremiumproductsthrough aportfolioofmarket-leadingbrandsthatoffer best-in-classtechnology,industry-leading engineeringandmanufacturingcapabilities, andsuperiorcustomerservice. ■
SignifyIntroducesAmbitious NetZeroEmissionsReduction Targets,ValidatedbySBTi www.signify.com/global/sustainability/ourprogram
Signifyannouncedthatitisexpandingits climateactionwithambitiousnewNetZero emissionsreductiontargets.Thecompany hasintroduceda2040net-zerotargetanda commitmenttoreduceabsolutescope1,2 and3greenhousegas(GHG)emissionsby 90%withouttheuseofcarboncredits.These targetshavebeenreviewedandvalidatedby theScienceBasedTargetsinitiative(SBTi).
“Absoluteemissionsreductionhasalways beenthebackboneofourclimateaction.We havereducedmorethan75%ofour operationalcarbonfootprintsince2010. Throughthecombinationofradical improvementsintheefficiencyofourproducts andhundredsofinitiativesimplementedin factories,offices,andacrossouroperations, wehavereducedourfullscopegreenhouse gasemissionsbyhalfsince2019.”
“Webelievewehaveanimportantroletoplay inthetransformationtowardalow-carbon economy.Ourdedicationtosustainable innovationhasenabledustocontinuously breakthroughenergyefficiencytechnology barrierswithourLEDproductsandconnected systems.”
–MauriceLoosschilder,GlobalHeadof SustainabilityatSignify
In2019,Signifybecameoneofthefirst30 companiesworldwidetohaveitscarbon emissionsreductiontargetsvalidatedbythe SBTitobealignedwiththe1.5°Cpathway. Havingsurpassedits2025targets,Signifyhas setfurthernear-andlong-termreduction targetsandwillbeintroducingadetailed ClimateTransitionPlanin2024.Thefollowing climategoalshavebeenreviewedand validatedasscience-basednet-zerotargets:
• OverallNet-ZeroTarget:Signifycommitsto reachnet-zerogreenhousegasemissions acrossthevaluechainby2040.Near-Term Targets:Signifycommitstoreduce absolutescope1and2GHGemissions 50%by2030froma2019baseyear.
• Signifyalsocommitstoreduceabsolute scope3GHGemissions50%withinthe sametimeframe.
• Long-TermTargets:Signifycommitsto reduceabsolutescope1and2GHG emissions90%by2040froma2019base year.Signifyalsocommitstoreduce absolutescope3GHGemissions90% withinthesametimeframe.
Signifyhashalveditsgreenhousegas emissionssince2019,withacumulative reductionof334milliontonsCO2einexcess oftherequirementsoftheParisagreement’s 1.5-degreepathway.
Signify’ssustainabilityprogramBrighterLives, BetterWorld2025setouttodoublethepace ofdecarbonizationrequiredbytheParis Agreement’s1.5°Cscenariobytheendof 2025.Thecompanyisproactiveinreducing emissionsacrossitssupplychain, participatingintheCDPSupplyChain programandencouragingsupplierstocommit toscience-basedtargets.
“Weareproudtobepartoftheglobal movementforambitiouscorporate decarbonization.Thisvalidationofourtargets setsanexampleourpeersandthebroader industrymustfollowasweredoubleour effortstoreduceemissionsacrossthevalue
chaininlinewiththeParisagreement’s 1.5-degreepathway,”saidLoosschilder.
AbouttheScienceBasedTargetinitiative TheScienceBasedTargetsinitiative(SBTi)isa collaborationbetweentheCarbonDisclosure Project(CDP),theUnitedNationsGlobal Compact,WorldResourcesInstitute(WRI) andtheWorldWideFundforNature(WWF). Launchedin2015,SBTidefinesand promotesbestpracticeinscience-based targetsettingandindependentlyassesses companies’targets. ■
UltraEfficientand3DPrinted Innovations,Supportingthe TransitiontoEnergy-efficient, SustainableWorkspaces
www.signify.com/global/innovation/3d-printing
Signifyhasintroducedcutting-edgesolutions thateffectivelyilluminateworkspaces,support productivityandacceleratethetransitionto energy-efficient,sustainablebuildings.
UltraEfficientluminairesdriveenergy efficiency
SignifycontinuestoexpanditsUltraEfficient (UE)range,withnewpanels,recessed luminaires,anddownlightsthathelp businesseslowertheircarbonemissions, whiledeliveringsubstantialcostsavingsover time:
PhilipsUltraEfficientTrueBlendisarecessed fitting,suitableforawidevarietyofceiling typesthatcansimplifytheprocessof switchingtoLEDs.Itsmodulardesignmakes itpossibletofitTrueBlendluminairesinthe samecutoutasexistingfittings,deliveringtime andcostsavingsforthecustomer.
PhilipsPowerBalanceUErecessedluminaires andPhilipsLuxSpaceUEdownlightscome withanultra-highefficacy(upto 174 lm/W and 160 lm/Wresp.),tunablewhiteoption, andalifetimeof50,000hrsatL90.Withthese UltraEfficientluminaires,userscanyield energysavingsofupto21.7%comparedto othercomparableLEDluminaires.Witha similarlook,feelandlightdistribution,they allowforaneasyreplacementofcurrent luminaires.TheyalsomeetSignify’sstrict LightingforCircularitycriteria,withpartsthat areserviceable,reusable,refurbishableand recyclable.
TheUltraEfficientrangewillbefurther extendedwiththePhilipsUltraEfficient CoreLinepanelinMay2024.
“Signifyissettingthestandardforoffice
lighting,investinginunderstandingand anticipatingourcustomers’needs,and developingproductthatfit.Withbuildings responsiblefor40%ofenergyconsumption and36%ofgreenhousegasemissionsinthe EU,thereisanurgentneedforbusinessesto transitiontoenergyefficientsustainable workspaces.Wearedrivingdownenergyuse withourUltraEfficientrange,savinginstallation timeandcostforourcustomers,while minimizingtheuseofmaterialswithour 3D-printedEssentialsandGrandrange,and reducingtheamountofplasticsinourtrade packagingby70%.”
–SophieBreton,ProfessionalBusinessLeader forEuropeatSignify
Remarkable,customizableand sustainablyprintedconnectedlighting fromPhilipsMyCreation
Developedtotransformofficesintoinspiring placestowork,thePhilipsMyCreationrange is3D-printedusingbio-circularmaterials, offeringunparalleledfunctionalityand customization,withawiderangeofcolor, texture,anddesignstochoosefrom.All MyCreationproductsareprinted-to-order, reducingwasteasnoexcessproductsare produced.
TheMyCreationEssentialdownlighterismade fromatleast55%bio-circularplastics. Integratedemergencylightingisavailablenow, withwall-mountedlightingcominginMay.The MyCreationGrandPendant,alsomadewith 55%bio-circularprintedparts,offersstylish, andfunctionallightingdesign,withtheability toconnecttodifferentlightingsystems.
TheGreenSpacePerfectFitisavailablein manysizestofitanyspaceintheceiling.With housingsandtrimsmadewithatleast65% post-industrialrecycledpolycarbonate,itis 3D-printedtoorder,makingitanidealsolution forrenovationprojects. ■
ZumtobelIntroducesthe EXTONAExplosion-proof Luminaire
www.zumtobel.com
Zumtobel’snewmoisture-proofluminaire EXTONAisidealforuseinhazardousareas andharshindustrialconditions.Certifiedfor
useinATEX2/22zones,thisexplosion-proof luminaireisparticularlyresilientthankstoits robustdesignandisalsoprotectedagainst themostchallengingconditions,suchas significantdustformationorpowerfuljetsof water.Italsofeaturesimpact-resistant housingandanemergencylightfunction.
Harshenvironmentalconditions,forexample inindustrialspacesandhalls,demandalot fromthetechnicalequipmentinthem–the lightinginparticular.That’swhyZumtobelis launchinganewlightingsolutionthatmeetsall therequirementsofchallengingenvironments: thenewEXTONAmoisture-proofluminaire, whichoffersreliablelightoutputtocertified standardseveninthemostdifficultconditions. Thisincludeseffectiveprotectionagainst explosionsinaccordancewiththeATEX guidelines(ATmosphèresEXplosives),which relatetoenvironmentsthatcouldhavean explosiveatmosphereonanongoingor short-termbasis.Apotentialsourceof ignition,suchasaluminaire,couldtriggera detonationinthistypeofenvironment,but thatisnotthecasewithEXTONA:asan ATEX-certifiedmoisture-proofluminairewitha maximumsurfacetemperatureof80°C, EXTONAispermittedforusein2/22zones. What’smore,vapors,gasesanddustsinthe atmospherewon’taffecttheluminaire’slight quality:withareductioninluminousfluxof L85after100,000hoursofuse,EXTONAis demonstrablydurableandrobust,helpingto saveoncosts.
Thankstoitsreliableexplosionprotection, EXTONAisasafelightingsolutionthatis suitableforallindustrialapplicationsand sectorswiththesetypesofpotentialhazards. Thisincludesareasintheautomotiveindustry wherepetrolisstoredorwherescrapmetalis pressed,wherebodyworkispaintedorwhere lithiumbatteriesaremanufactured.EXTONA alsoplaystoitsstrengthsinpowerstations–forexampleinengineroomsandbiogas plants,petrolandpelletstores,orwoodchip productionplants.Themetalworkingindustry
isanothersectorwherethisluminaireisa perfectmatch–inanyareaswherewelding, soldering,blasting,sandingorpaintingtake place.Thewoodworkingindustrycanalso benefitfromitshighdegreeofexplosion protection,forexampleinareasaroundsaw mills,chippersorpaintshops.Lastbutnot least,EXTONAisidealforthetextileand paperprocessingindustries,offeringample explosion-prooflightoutputfortherecycling, grindingandshreddingoffabricandpaper,for example.
Aswellasitshighlevelofexplosionprotection, theluminairealsooffersoutstanding resilience.EXTONAcanwithstandevenheavy impactsandsignificantmechanicalforces, andanIK10ratingmeansithasthehighest possiblelevelofimpactresistance.Thanksto itsIP66protectionclass,thismoisture-proof luminaireisalsoreliablyprotectedagainst challengingenvironmentalconditionssuchas penetratingdustorpowerfuljetsofwater.In addition,thehousingismadefromdurable polycarbonatewithUVstabilizationtoprevent discoloration.EXTONAcancopewithawide rangeoftemperaturesandworksaswellin coldconditionsofupto-20°Casitdoesin extremeheatofupto60°C.
Asanotherbenefit,theluminaireofferscleverly designedsafetyfeaturesforemergenciesand isfittedwithanemergencylightfunctionas standard,withasingle-batterypowersupply thatprovidesforanoperatingtimeofthree hours.Thismeansthatareliablelightsource isguaranteed,evenwhentheunexpected happens,sothatenoughtimeandlightare availabletoevacuateahazardousareainan emergency.ThankstotheDALIprotocol,the emergencylightingsupplycanbeseamlessly connectedtobuildingmanagementsoftware andcanberegularlyreadout,testedand monitored.TheDALIintegrationenablesthe luminairetobecontrolledindividuallyandin responsetocurrentneedswithinadynamic digitallightingmanagementsystem.
Maximumefficiencypairedwithoptimal luminousefficacy
EXTONAcombinesATEX-certifiedlighting withoptimalluminousefficacy:the moisture-proofluminaireisavailablewithsix differentluminousfluxvaluesfrom 1,200 lmto
11,000 lmasstandard,butcanalsobe upgradedtoaversionwithupto 16,500 lmon customerrequest–withanefficiencyofupto 166 lm/W.Thisreducespowerconsumption, lowersoperatingcostsandminimizesCO2 emissions,optimizingtheenvironmental footprintofindustrialplants.Theluminaireis suppliedwithaneutralwhitelightcolorat 4,000 Kasstandardandoffersimpressive colorrenderingofCR180,whilethe medium-beamlightdistributionprovides optimalilluminanceforindustrialapplications. EXTONAcanalsobeinstalledinavarietyof ways:whetherit’smountedontheceiling,a wallorapoleorsuspendedwithacable suspensioncordorachain,theluminairecan beoptimallyadaptedforanycontextand space.
“WithEXTONA,we’vecreatedalighting solutionthatuniquelycombinesbrilliantlight quality,highstandardsofexplosionprotection, maximumdurabilityandexcellentenergy efficiency.Thismeansthateveninchallenging industrialenvironmentswecanachieve human-centeredlightthatprovidesthe highestdegreeofsafetyandusabilityaswell ascreatingapleasantatmospheretoworkin. Mythanksgototheprojectteam,whohave carriedoutreallyexcellentwork”,saysFelix Breuss,ProductManagerforProtected LuminairesatZumtobelLighting. ■
LUXEONHL4XforHigh OutputApplications& ImprovedEfficiency
https://lumileds.com
Lumiledsannouncedthereleaseofits LUXEONHL4XpowerLEDthatdeliversthe lightingindustry’shighestoutputandefficacy; itfurtherstheabilityforlightingmanufacturers tostandardizetheirdesignsarounda commonfootprintandprovesthatmeaningful LEDefficacygainsarestillpossible.
LUXEONHL4Xisdesignedspecificallyfor outdoorandindustrialapplicationssuchas stadiumlights,streetlights,andhighbay luminaires,aswellastorchesandrugged portabledeviceswherethehighlumen density,efficacy,robustness,andqualityof lightarecritical.Thehigh-powerdomed packagedeliversveryhighoutput,excellent
efficacy,colorstability,andlongevity regardlessoftheapplicationorenvironment.
Withtypicaloutputof 680 lmat 700 mAand typicalefficacyexceeding 168 lm/W, LUXEONHL4Xoffersmanufacturersasimple, seamlessupgradeforvirtuallyanyexisting applicationusingasimilar3535package. Engineersmanagedtheopticaldesignsothat existingopticsforsolutionswith 2 mm2 work withthenewLED.
LUXEONHL4XataGlance
• Industrystandard3535packagewitha 3-stripefootprint
• CCToptionsof3000K,4000K,5000K, 5700K,and6500K
• CRIoptionsof70,80,and90
• 4Amaximumdrivecurrent
• Optimizedintensitydistributionforhigher systemopticalefficiency(nolossoflight outputbelowthehorizon)
• Uniquedomedesignisoptimizedto maximizelightoutputwithin±130°
• Largethermalpadallowshighdrive currentsandclose-packedLEDs
“ThefeaturesofLUXEONHL4Xmakeitideal forhigh-lumenapplicationssuchasindustrial andstadiumlighting,”saidNomanRangwala, HeadofProductMarketingandManagement (L1)atLumileds,“However,theoptical compatibilitywithmanyexisting3535optics makesitpossibletoreplacelower-performing LEDsdirectlyandimprovesystemefficiency by 10 lm/Wormore.Thiswillbeagame changer.” ■
ToyodaGoseiDevelopsUV-C
internationallyinApril2024,topromotetheir widerusefordisinfectingwater,airand surface.
Comparedwithmercurylamps,UV-CLEDs areenvironmentally-friendlyasitis mercury-free,morecompact,andhavea longerlife.Theseadvantagespromotedtheir wideuseindevicesfordisinfectingairand surfacesduringtheCovid-19pandemic. SincetheydifferfromlightingLEDsin composition,however,lightoutputhasbeen stilllimited.Forwaterpurificationplantsand othersituationswherehighdisinfection performanceisneeded,mercurylampsare stillused.
ToyodaGoseihasleverageditsexpertisein crystallizationanddesignofblueLEDsfor lighting,andsuccessfullydevelopedUV-C LEDsthatachievelightoutputatthelevelof 200milliwattswithasinglechipwhendriven byacurrentof350milliamperes. ImprovementoftheLEDstructureand compositionquadrupledtheamountoflight thatcanbeextracted.EnhancedLED performanceincludingdisinfectingcapability ofaboutthreetimeshigherwillexpandtheir applicableareasincludingafuturealternative tomercurylamps,contributingtomore hygienicandsaferliving. ■
andCertification
SpecificationsforDALI+
www.dali-alliance.org
www.toyoda-gosei.com
ToyodaGoseiCo.,Ltd.hasdevelopeddeep ultraviolet(UV-C)LEDswithlightoutputthatis amongthehighestintheworld.UV-Cisused indisinfectionasitdestroysviralandbacterial DNAstructuresandinhibitstheirreplication. Asanalternativelightsourceformercury lampsusedfordisinfection,improved performanceofUV-CLEDshasbeen expected.SamplesalesofToyodaGosei’s highperformanceLEDswillstarted
TheDALIAlliance,recognizedasthe internationalauthorityinlightingtechnology standardization,hasunveiled much-anticipatedcertificationdetailsforits wirelessspecification:DALI+overThread.
Aslightingspecificationsincreasinglyseek smarter,sustainable,andinteroperable solutions,DALI+emergesasacrucialenabler ofstandardizedwirelessorIP-basedlighting systems.Thealliance’scollaborationwith partnerssuchasThreadGrouphasresultedin theintegrationofenhancedsecurityand encryptionsolutions,ensuringtheintegrity andconfidentialityofdatatransmissionwithin DALI+networks.
KeyfeaturesofDALI+withThreadinclude:
• WirelessMeshNetwork:Threadcreatesan InternetProtocolversion6(IPv6)based wirelessmeshnetwork.Off-the-shelf Threadborderrouterscanalsobeusedto connectmultipleThreadnetworksthrough IPtechnologies,suchasEthernetorWi-Fi, allowingahighlyscalablelightingcontrol system.
• ExtendedAddressing:Inadditiontothe standard64controlgearand64control deviceaddresses,DALI+withThreadIPv6 routingallowsalmostunlimitedaddressing capability.TheusualDALIbroadcast,group andshort-addressingmethodsareincluded togetherwithIPunicastandmulticast capability.
• Interoperability:DALI+certificationincludes allthebenefitsoftheexistingDALI-2and D4icertificationprogramswithextensive testing,independentverification,andlisting ofeverycertifiedproductinapublicly searchableproductdatabasetoensurea highlevelofproductinteroperability. Furthermore,DALI+bridgedeviceswill allowDALI-2wireddevicesorsystemsto connectwithandoperatewiththeproducts inaDALI+wirelesssystem.
• DeviceSupport:DALI+supportsawide arrayofcontroldevices,including occupancysensors,lightsensors, switches,sliders,rotaries,and pushbuttons.Controlgearsupport currentlyincludesLEDdriverswiththethree optionaldataparts:luminairedata,power andenergy,anddiagnosticsdata.
PaulDrosihn,GeneralManageroftheDALI Alliance,expressedenthusiasmaboutthe launch,stating,“Thisrepresentsasignificant advancementinDALI-enabledtechnology. Ourmembersanduserswillexperiencethe benefitsofenhancedwirelessinteroperability andstrengthenedsustainabilitycredentials.” Drosihncontinues,“Moreover,thismilestone underscoresoursteadfastcommitmentto drivinginnovationandnurturing eco-conscioussolutionswithintheindustry. ByleveragingthepotentialofDALItechnology, wearenotonlyrevolutionizinglightingcontrols butalsolayingthegroundworkforamore sustainablefutureforgenerationstocome.”
Commentingonthecollaboration,Klaus Waechter,VPCommercialBuildingsat Thread,said,“Weareproudtocollaborate withtheDALIAllianceinutilizingThread technologyintheDALI+specification.This
partnershipunderscoresourcommitmentto advancingwirelessconnectivityand interoperabilityforcommercialgrademarkets andthelightingindustryingeneral.” ■
www.npc.lighting
NordicPowerConvertersisthrilledto announcetwosignificantadditionstoour productportfolio:theInviTrackCasambi GatewayandtheInviTrackLEDDriverwith ManualDimming.Recentlyshowcasedat Light+Building2024inFrankfurt,these productsunderscoreourcommitmentto providingsmart,efficientlightingsolutionsthat catertobothadvancedwirelesscontrol systemsanddesiresforsimplisticyet high-qualitymanuallightingcontrol.
InviTrackCasambiGateway:Advanced WirelessLightingControl: TheInviTrackCasambiGatewaysetsanew standardinlightingcontroltechnology, facilitatingseamlessintegrationwithCasambi wirelesssystems.Thispowerfulgatewaycan manageupto64DALIdevicesinupto8 groups,offeringhighflexibilityandcontrol. Moreover,thegatewaysimplifiestheDALI addressingprocess,makingiteasierthanever toconfigureandcustomizelightingsettingsto suitanyenvironment.Beingpartofthe InviTrackfamily,theInviTrackCasambi gatewayisfullyintegratedinto3-phasetrack systemsfromGlobal,Stucchi,Eutrac,and PowerGear.
KeyFeatures:
• IntegratessmoothlywithCasambiwireless systems,offeringexpansivecontrolover lightingsettings.
• Controlsupto64DALIdevicesinupto8 groups,enablingcomprehensive managementofdiverselighting environments.
• SimplifiestheDALIaddressingprocess, allowingforeasycustomizationand configurationthroughthegatewayitself.
• FitsallmajorEuropean3-phasetrack systems
InviTrackLEDDriverwithManualDimming: WhereSimplicityMeetsExcellence Showcasingourdedicationtointuitivelighting solutions,theInviTrackLEDDriverwith ManualDimmingdeliversuncomplicatedand directmanualcontrol.Thisdriversimplifiesthe processofachievingtheideallighting ambiance,enablingadjustmentsthatareboth immediateandprecisewithoutrelyingon digitalcontrollers.Itsstraightforward operationmakesitanexcellentchoicefor settingswheresimplicityandtactile responsivenessareparamount.
Itisanidealchoiceforenvironmentslike museumsandgallerieswherelighting precisioniscrucial,butmayalsofindusesin residentialorotherapplicationswheresimple andstraightforwardlightingcontrolisdesired. Finally,theInviTrackLEDDriverwithManual Dimmingboaststhehigh-qualityperformance featuresoftheInviTrackLEDdriverfamily, suchasaverywideoutputwindow,low inrushcurrent,flicker-freelight,andsmooth dimmingcapabilitiesdownto0.1%.
KeyFeatures:
• Manualdimmingfunctionalityforeasy, intuitivecontroloverlightinglevels.
• Idealforsettingsrequiringpreciselighting adjustments,enhancingvisualexperiences withouttheneedfordigitaldevices.
• Delivershighperformancewithawide outputwindow,lowinrushcurrent, flicker-freeoperation,andsmoothdimming downto0.1%.
Withtheselatestproductlaunches,Nordic PowerConverterscontinuestoleadinthe developmentofinnovativelightingsolutions thatmeetandexceedtheexpectationsofour customers.Whetherforspecialized applicationsorbroaderlightingprojects,the InviTrackCasambiGatewayandInviTrackLED DriverwithManualDimmingaredesignedto transformthewaylightingiscontrolledand experienced. ■
www.plexiglas-polymers.com
BWFProfilesusesPLEXIGLAS®proTerraM5 containingrecycledmaterialforhigh-quality opticalcomponentsinluminaires.
Sustainableluminairedesignisamultifaceted standardwhichcanbebrokendowntothe manufacturingprocessofeverysingle
luminaire.Althoughtheuseofrecycled materialisaresource-efficientoption,it reachesitslimitsforlensesandlightcoversas theserequirerecycledmaterialswithflawless opticalproperties.Onesuchmaterialis PLEXIGLAS®proTerraM5,amolding compoundfromRöhmcontainingrecycled polymethylmethacrylate(PMMA).
Bymakinganopticalcomponentforthe lightingmanufacturerRIDIusingthismaterial, BWFProfiles,aleadingmanufacturerof high-qualityplasticprofilesforthelighting industry,hasproventhatitispracticalfor partssuchasthis.BWFProfilesuses PLEXIGLAS®proTerraM5toproducea continuous-rowlightingsystemforaconcept studyontheRIDILINIAEVOsystem,which waspresentedattheleadingtradefairLight+ Building2024asanexampleofsustainability.
Sustainablemoldingcompoundwith recycledmaterial
“OurPLEXIGLAS®proTerraM5molding compoundcontainsupto30percent mechanicallyrecycledPMMAfrom post-industrialsources,whichismixedwith newPLEXIGLAS®inacontrolledmanner. Thisreducesthematerial’scarbonfootprintby 30percentcomparedtonewmaterial,” explainedChristianBitsch,SeniorMarket TechConsultingManagerintheMolding CompoundsbusinessunitatRöhmGmbH.
Decisioninfavorofthecirculareconomy Lightingmanufacturersandtheirsuppliers strivetoproduceinanenvironmentallyand climate-friendlymanner,assustainabilityhas becomeanestablishedmarketdemand.“At BWFProfiles,theprocessedmaterialsalone accountfornearly80percentofthe company’scarbonfootprint,”saysNico Sonntag,MaterialsDevelopmentEngineerat BWFProfiles.That’swhythecompanyplaces suchalotofvalueonusingresource-efficient materialsandhandlingthemsparingly–for example,bywastingaslittlematerialas possiblewhenstartingtheextruderandby returningproductionwastedirectlytothe internalrecyclingprocess.
FlorianBisle,DirectorInnovation& DevelopmentatBWFProfiles,added:“We haddiscussedpossibleapproachesforthe sustainableproductionoflightcovers.We rejectedtheoptionofprocuring mass-balancedmaterial,andinstead,devised asolutionbasedonadirectcirculareconomy, whichmeantthatwehadtotestvarious recompoundedmaterials.”Inthiscase,this referstoreprocessedmaterialscontaining post-industrialrecycledmaterial.
“PLEXIGLAS®proTerraM5impressedus withitsopticalpurity”
“Theprerequisitewasthatweobtained recycledmaterialswithoutanyinclusionsor unwantedblackspecks.PLEXIGLAS® proTerraM5convinceduswithitshighpurity,” saidBisle.Thehigh-qualityPMMAplastic providesidealconditionsforthecircular economybecauseitcanbecompletely recycledtimeandagainwhilemaintaining virtuallyidenticalmaterialproperties.Its exceptionalopticalpropertiesarealso retained.
“Weneedareliablepartnerthatcan guaranteeconsistentlyhighquality.Inthis respect,weareingoodhandswithRöhm,” Bisleemphasized.“Weshareapartnership thatgoesbackmanyyears.Manydecades ago,BWFProfileswasthefirstcompanythat processedPLEXIGLAS®moldingcompounds initsextrusionbusiness.Andeventodaywe relishbeingapioneerfornewprojectswiththe newandsustainablePLEXIGLAS®proTerra.”
Coextrudedprofilewithtailored properties
Theopticalcomponentsfortheconceptstudy ontheRIDILINIAEVOcontinuous-rowlighting systemcontainaround78percent PLEXIGLAS®proTerraM5.Inorderto achievethelightandproduction-related propertiesthatRIDIwaslookingfor,BWF Profilescoextrudedthe60-millimeter-wide profilewithtwoPMMAproductsfromRöhm: ThecentrallypositionedTIRlensconsists entirelyofPLEXIGLAS®proTerraM5.Aswith othercrystal-clearPLEXIGLAS®molding compounds,itpossessesexceptionallyhigh lighttransmissionwithvirtuallynoabsorption ofvisiblelightinthematerial.Theprofilebase,
thecrosspiecesthatholdthecircuitboardin placeandthelateralsnap-inhooksmust withstandhighmechanicalstresses. Therefore,PLEXIGLAS®Resistwithahigher impactresistanceisaddedtothe PLEXIGLAS®proTerraM5usedinthis segment.
Strongpartnershipforinnovative, sustainablelightingtechnology
TheopticalqualityalsoimpressedtheCEOof RIDILeuchtenGmbH,ManfredDiez,and ProductManagerEdwinBaran:“Theoptical componentswithrecycledmaterialmeetour stringentqualitydemandsforasustainable lightingsolution.IncollaborationwithBWF Profiles,ouraimisalwaystoproduceas sustainablyaspossiblewiththehighest degreeofenergyefficiency.Startingfromthe veryfirstdiscussions,wefocusondesigning productsthatmeetthedemandsofthe circulareconomy.” ■
BrightView’sNewDisplayFilm
www.brightviewtechnologies.com
BrightViewTechnologies,aleadingglobal supplierofVisualIntelligence™solutions,has announcedthelaunchofitsnew PolycarbonateBrightnessEnhancingFilms (BEFs),engineeredtoincreasebrightnessup to30%forhigh-performancedisplaydesigns. Anidealsolutionfordesktopmonitors, laptops,tabletsandothercustomdisplays, theuniquefilmstackhelpsengineeringteams achieveadvancedopticswhileensuring efficiency.
“InnovationinAIchipsandothertechnologies areleadingtoexcitingbreakthroughsacross manyapplications,butdesignengineersmust balancetheseadvancementswithobjectives foropticsandpowermanagement,”said JenniferAspell,CEOofBrightView. “BrightView’snewBEFsextendourfull portfolioofdisplayfilmsolutionsdesignedto supportinnovatorsattheforefrontof cutting-edgetechnologydevelopment, empoweringthemtotakeadvantageofthe latestsolutionswithanadvanced,efficient displayfilmforoptimizedvisualintelligence.”
BrightView’sBEFsleverageahigh-quality polycarbonatesubstrate,combinedwith premiereedge-litandmini-LEDmicrolens array(MLA)stacks,tomaximizebrightness
andefficiency.Thetwo-filmsolutionhelps increaseoutputfromthebacklightand minimizepowerconsumptionofthedisplay–makingitavaluableresourceforoptical deploymentacrossemergingautomotive, augmentedreality,virtualrealityand aerospaceapplications,amongothers. ■
NichiaAutomotiveInnovation CenterinGermany
www.nichia.co.jp/en/
Inasignificantmovetospearheadthefuture ofautomotivelightingdesignandfunctions, theworld’sleadingLEDmanufacturerNichia announcedthelaunchoftheNichia AutomotiveInnovationCenterlocatedin Aachen,Germany.Thenewlyinaugurated facilitymarksapivotalstepinthecompany’s ongoingcommitmenttoinnovateanddeliver enhancedsupporttocustomersthathave rapidlyevolvingrequirements.
NichiaAutomotiveInnovationCenter’smission istodevelopadvancedandsustainable lightingsolutionssuchasimprovementof roadsafety,visualcomfortandenergy efficiency,aswellasenhancingtheaesthetic appealandfunctionalityofvehiclesbyutilizing andcombiningNichia’slatesttechnologies.In closepartnershipwithindustryleaders, togetherwiththeR&DteamatNichia’s headquartersinJapan,theCenterwill acceleratethedevelopmentoftechnology breakthroughsandachievequickermarket entry,whileconsistentlyprioritizingadvances inthequalityoflight.Tosupportthenext generationofautomotivelightingsolutions, NichiaAutomotiveInnovationCentercontains awidearrayoflaboratorytoolsfortesting, modeling,monitoring,analysis,andrapid prototyping,amongothers.
Dr.UlfMeiners,ManagingDirector,Nichia AutomotiveInnovationCenter,explains:“The keytounlockingthefullpotentialof automotivelightingliesincollaboration.By workingcloselywithbusinesspartnersand academia,wewillbringgroundbreaking solutionstothemarketfasterandmore efficientlythaneverbefore.Asaresult,the Centercanrapidlyacceleratethepaceof innovation.Industryleadersthatarereadyto redefineautomotivelightingstandardsneedto connectwithuswithgreaturgencytotruly shapethefuture.” ■
Dr.JenniferVEITCH
“Lightandlightingresearchcan contributeto12oftheUN SustainableDevelopmentGoals. Fewsubjectareascanclaimsucha broadreach.”
PhotoCredits:©NationalResearch CouncilofCanada2019.
Inthisenlighteninginterview,JenniferVEITCH,presidentoftheCIE, sharesinsightsintoherextensivecareerinthelightingindustry,beginning fromheracademicpursuitsinenvironmentalpsychologytohersignificant contributionsattheNationalResearchCouncilofCanada.She discussesherdeep-rootedconnectiontolighting,fueledbybothfamilial influencesandherearlyprofessionalengagements.Throughoutthe interview,sheoffersanin-depthexplorationoftheCIE’sorganizational structure,itspivotalroleinadvancinglightingscienceandstandards,and thestrategicobjectivesoutlinedintherecentlypublishedCIEResearch Strategy.Thisdocumentaimstoenhancetheintegrationoflighting researchwithglobalsustainabilitygoals,demonstratingthecritical impactoflightingonbothhumanhealthandenvironmentalwell-being.
https://cie.co.at
LEDprofessional: Couldyouplease shareyourprofessionaljourneywith us?Howdidyouentertheworldof lighting,andultimatelybecomethe PresidentoftheCIE?
Dr.JenniferVEITCH: EarlyinmyuniversityyearsIencounteredenvironmental psychology,whichseekstounderstand howourphysicalsurroundingsaffectus and,inturn,howweaffectourphysicalworld.AtthatsametimeIworkedin thelabofapsychologyprofessorwho hadaninterestinlighting,andIbecame involvedinhisresearch.Myfatherwas anindirectinfluence–hewasaprofessorofinteriordesign,andtaughtlighting tohisstudents.I’msurethatfromhimI learned,atanearlyage,howimportant lightingistothespatialexperience.
Likemanypeople,onceIwas“bitten bythelightingbug”Istayedpassionate aboutit.IwasfortunatetofindaprofessionalhomeattheNationalResearch CouncilofCanadarightoutofmydoctoralstudies(attheUniversityofVictoria inBritishColumbia,Canada),andhave workedthereasaresearchereversince. ThefirstCIESessionafterIjoinedthe NRCwas1995inNewDelhi,whereIgot toknowmanypeoplewhohavesince becomefriendsandcolleagues–andI waspersuadedtojoinmyfirstTechnicalCommittee,TC6-11.WhenitsChair hadtostepdownafewyearslater,I tookonthatroleandledthefinalwork onwhatbecamethefirstconsensus publicationconcerningtheeffectsoflight onhealth(CIE158:2009),originallypublishedin2004.
Thesedays,manyorganizationslookto demonstratetherelevanceoftheirresearchbylookingtohaveittakenupby others,andIquicklycametoseethe CIEasanimportantbodyfortranslatingmyresearchintolightingguidance andrecommendations–andequally, asthesourceofdiscussionsandideas fornewresearch.Ialsofoundthatby takingonincreasingresponsibilitiesasa leaderintheCIE,Ilearnednewskillsthat transferredbacktomydailywork.I’ve servedasaTCmember,TCChair,DivisionMember(forCanada),DivisionSecretary,DivisionDirector,Vice-President Technical,andnowCIEPresident.Everystephastaughtmecommunication andmanagementskills–andalways, broughtmeintocontactwithinteresting, lovelypeoplewhohavebecomegood friends.
LEDprofessional: Naturally,many peoplerecognizethenameCIE,but it’slikelynoteveryoneisawareof whattheCIEdoesforthefieldof lightingandhowtheCIEisorganized. Wouldyougiveusacloserlookatthe CIEasanorganization?
Dr.JenniferVEITCH: Everyonewhois deeplyinvolvedinlightingknowsthatit’s acomplextopic.Notsurprisingly,the CIEisacomplexorganization.Broadly speakingwehavetwoaspects:oneas acollegialorganizationthatpromotes knowledgeexchangeaboutthescience (andtoalesserextent,theart)oflight andlighting,andoneasaninternational standards-developingorganization.We structureourworkintosixDivisions,
eachwithresponsibilityfordevelopinga workprograminitsscope:Visionand Color;PhysicalMeasurementofLight andRadiation;InteriorEnvironmentand LightingDesign;TransportationandExteriorApplications;Photobiologyand Photochemistry;ImageTechnology.Divisionsmanagethescientificworkflowand proposeTechnicalCommitteesthatwill developapublication,usuallyatechnical reportoraninternationalstandard,that representsaninternationalconsensuson thattopic.Followingarigorousreview andapprovalprocess,whichinvolves CIENationalCommitteesspreadoversix continents,thesedocumentsarepublishedbytheCIE.CIEevents,ranging fromscientificconferences(heldevery twoyears)toexpertsymposia,workshops,andtutorialssupportthetechnicalworkbybringingpeopletogetherto presentandtodiscusstheirresearch.
LEDprofessional: Inthisinterview,we wouldliketodelveintotherecently publishedCIEResearchStrategy andshedmorelightonthisimportant document.WhatinspiredyoutocontributetotheCIEResearchStrategy, andhowdoesyourpersonalbackgroundorinterestinlightinginfluence yourwork?
Dr.JenniferVEITCH: Ithinkit’sfairto saythatlightandlightinggetstakenfor grantedamongpeoplewhohaven’tyet foundthelightingcommunity(bywhich Imeaneveryonewithaprofessionalinterestinlightandlighting).Thinkofhow youexplainwhatyoudotoaneighbor fromanotherindustry–I’llbettheyex-
presssurpriseaboutourfield’stechnical complexity!Thisleadsmanyresearch fundersnottoprioritizelightingtopics.Likeallresearchers,I’vefacedthis problemandcanseehowifonlyour workwerebetterappreciated,andbetter funded,wecouldaccomplishsomuch moretoimprovethelitenvironment,improvehumanandecologicalhealthand well-being,andreduceresourceuse.
Aboutadecadeago,theCIEleadership recognizedthatwecouldhelptheresearchcommunitybydevelopingatool tohelpthemtoarticulatetheimportance oftheirresearchtopics,andthatinthe processwecouldnudgeresearchersto focusontopicsthatourexpertsjudged willsupportthenextgenerationsoflightingguidanceandstandards.Thefirst CIEResearchStrategywaspublishedin 2015,andourprogramofprovidingResearchSupportletterslaunchednotlong after.
ThelatestrevisionoftheResearchStrategy,releasedin2023,representsamajorreorganizationofthedocument,with itsmostoutstandingfeaturebeingto connecttheresearchthemeswiththe waysinwhichtheresultscansupport theachievementoftheUNSustainable DevelopmentGoals(SDGs).Thereare 17SDGs,andlightandlightingresearch cancontributeto12ofthem!Fewsubjectareascanclaimsuchabroadreach, andIfindthatveryexciting.It’sshapinghowIthinkaboutmyownfutureresearchandIhopeitwilldosoforothers.
Thereare17UNSustainableDevelopmentGoals (SDGs),andlightandlightingresearchcancontributeto12ofthem.
LEDprofessional: Whataretheprimarygoalsyouaimtoachievewith theCIEResearchStrategy,andhow doyouenvisiontheseobjectivesadvancingthefieldsoflightandlighting overthenextdecade?
Dr.JenniferVEITCH: Wehopetoinspireresearcherswhosesubjectmatter fallsintoourthemes,sothattheywilldevelopresearchproposalsthataddress thosethemes.Withoutreiteratingthe wholedocumenthere(it’savailablehere:
https://cie.co.at/research-strategy),we wanttheresearchcommunitytotakeon projectsthataddressthetopicsoutlined sothatwecangetonwithnewandupdatedguidance.Then,wewantresearch funders–bywhichImeannationalfundingagencies,charitablefoundations,and industry–tosupporttheseprojectsso thattheyhavetheresourcestoprovide ustheknowledgeweneed.Furthermore,webelievethatwiththisadded supportwillcomeagreaterappreciation oftheimportanceoflighttolife,sothat overtime,theapplicationofthisresearch willresultinbetterlightingforall.
LEDprofessional: Inwhatwaysdo youforeseedigitalizationtransformingmetrologyscienceandthelighting industry,andwhatarethepotential challengesandopportunitiesassociatedwiththistransformation?
Dr.JenniferVEITCH: Atthemostbasic level,makingdataFAIR(Findable,Accessible,Interoperable,andReusable) canimproveourabilitytomakeuseof thetremendousvolumeofdatawecan generate,especiallyascomplexcomputationsarethebasisofdecision-making. Forlighting,havingcleardata-sharing protocolsandstandardizedmetadata andfileformatsforthenextgenerations ofsimulationsoftwarecansupportlightingdesignandimprovethefinaloutcomes.Thisisespeciallyimportantfor physiologicalexperimentswithpeople, whichareextremelycomplexandexpensive.Itisthereforeimportantthatthese experimentsareverywelldocumented, withverydetailedmetadata,inorderto guaranteescientificreproducibilityand reusability.
Machine-readablestandardscouldenablefasterandmoreaccuratedeterminationsthatproposeddesignscomply withtherelevantdocuments,possibly basedontheoutputofthosemoreaccuratesimulations.Weareintheearly daysofunderstandingallthesteps neededtoimplementthatvision.
Therearelotsofchallengesto‘digitalization’initsmanyforms,buttheoneIsee mostclearlyisintheneedforconsensus.Interoperabilityrequiresagreement amongparties,andIhaveyettoseea machinethatcanquicklybringeveryonetothesameconclusion,especially iftheremightbeacommercialinterest involved.
LEDprofessional: Couldyouelaborateontheimportanceofinclusiveandequitablelightingintoday’s globalcontext?HowdoestheCIE plantoaddressdiversity,equity, andinclusioninlightingresearchand standards?
Dr.JenniferVEITCH: Mostofthefundamentalresearchonwhichpresent-day lightingisbasedwasconductedusing whatpsychologistscallWEIRDsamples: “White,Educated,Industrialized,Rich, andDemocratic”.Thislimitsthegeneralizabilityoftheresults,becausewelack informationaboutmostofthepopulation.Furthermore,mostresearchersfilter outtheextremescores(outliers)and focusontheaverage.Aswestarttoexploremorediversesampleswelearn,for example,thatthereareinter-individual differencesinthespectralsensitivityof theconephotoreceptorsthatourcurrent modelsdonottakeintoaccount,and thesemeanthatdeterminationsofcolor appearanceandphotometricquantities basedonasinglestandardobserver don’taccountwellfortheexperiences ofmanypeople.Whenwelackgood information,wecan’tdevelopguidance thatwillimprovethequalityofthelitenvironmentforthepeoplewhoareleft out.Thatiswhywehavecalledinthe ResearchStrategyfordiversityandinclusiontobeaddressedasanoverarching themeinallprojects.Thisextendstothe compositionofresearchteams,whereverpossible,becausetheevidenceis clearthatmorediverseteamsperform better.
LEDprofessional: HowdoestheCIE ResearchStrategyalignwithenvironmentalsustainabilitygoals,particularlyinreducingcarbonemissions andminimizinglightpollution?
Dr.JenniferVEITCH: Eachthemeinthe ResearchStrategyisalignedwiththeUN SDGs,soIinviteyourreaderstoseethe documentforallthedetails.Ouraimis toenablebetteruseoflightandlighting insupportoftheSDGs,andthatmeans beingabletodelivertherightlightinthe rightplaceandintherightamountatthe righttimetomeettheuserneedsforthat applicationwithoutenergywastageand whilerespectinglocalecologicalconditions.Obtrusivelight,astheCIEcalls it,iswastedenergyaswellascausing harmtofloraandfaunaandourappreciationofthenightsky.
Carbonemissions,ofcourse,dependin largepartontheenergymixinagiven placeandtime,andthisisoutsidethe CIE’sscope.Whatwecandoistoprovideguidancethatreduceslightingenergyuse,withreducedcarbonemissions followingfromthat.
LEDprofessional: Withthedecline intheuseofincandescentsources andtheriseofLEDtechnology,what newchallengesariseinthecalibration ofphotometersandspectrometers, andhowistheCIEaddressingthese challenges?
Dr.JenniferVEITCH: TheCIEhaspublishedanewreferencespectrumforLED photometry,withtheintentthatLED sourcesshouldbedevelopedtorealize it.TheseLEDsourceswouldthenreplacetheoldincandescentsourcesfor calibrationofphotometers.Giventhat measurementerrorishigherwhenthere isaspectralmismatchbetweenthe calibrationsourceandthetestsource, theshifttotheLEDreferencespectrum shouldincreasemeasurementquality whenthetestsourceisanLED(asisincreasinglythecasetoday).
Therestillremainstheproblem,however,thatLEDscan’tpresentlyreplace incandescentsourcesforcalibrationof spectroradiometers,particularlyoutside thevisiblerange(i.e.intotheultraviolet andinfrared).Hereitisimportantthat therelevantresearchisdrivenforward, andIampleasedtosaythattheCIEresearchstrategyhashelpedtoinitiatea majorinternationalresearchproject(see https://www.ptb.de/epm2022/new stand/home).Sadly,however,withthe technologicalshifttowardsLEDs,the know-howtomanufacturemetrological incandescentreferencelightsourcesis alsodeclining.
LEDprofessional: Whatarethemost significantrecentdiscoveriesabout theimpactoflightingonhumanhealth andwell-being,andhowmightthese findingsinfluencefuturelightingdesignandstandards?
Dr.JenniferVEITCH: Thereareseveral interestingdevelopments,althoughitwill beawhilebeforetheyarefirmlyenough establishedtomeritinclusioninguidance documentsorstandards.Iamintrigued bytheevidencethatdaytimebrightlight exposurecaninfluencethequalityof sleeponthenightfollowing.Froma
buildingscienceperspectivethemountingevidencethatwebenefitfrombright dayspointsincreasinglytotheneedfor moreandbetterdaylightinginbuildings. Iamintriguedbyevidencesuggesting thatalthoughthenear-infraredregionof thespectrumisnotalargecontributor tobrightnessperception,itmighthave otherinfluencesonphysiologyandbehaviour.Iftheseearlyresultsholdupto closerscrutinyandreplication,itcould haveaprofoundeffectonlightsources andonthequantitiesweusetodescribe theirefficacy.
Practicalexamplesoftworoomsthatcombine daylightandelectriclight.PhotoCredit:©NationalResearchCouncilofCanada2019.
LEDprofessional: Howdoyousee theroleoflightingevolvingwithinthe frameworkofsmartcities?Whatare thekeyconsiderationsforintegrating lightingsystemswithotherurbanservices?
Dr.JenniferVEITCH: Smartcitiesgive thepotentialtounderstandhowplaces areused,asopposedtohowtheywere plannedtobeused.Thisallowsdesignersandplannerstobetteraddressthe realneedsofurbandwellers.Itgivesan understandingofthe“life”ofthecity, howspacescomealiveandgotosleep, andhowtheychangethroughoutthe day.
Adaptivespacescansenseoccupancy anddensityofoccupancy,adjustingto theneedsofthepeopleinthespace whileminimizingenergyusageandreducingecologicalimpacts.Itdoes, however,comewithsomerisks.For example,asmartlightingsystemmight followpeopleastheymovethroughthe
streets,toreduceenergyuseandenvironmentalconsequences.Someindividualsmightperceivethisasspotlighting, andcouldfeelunsafethinkingthatthe governmentiscontrollingtheirconditionsanddrawingunwantedattention tothem.Othersmightappreciatethis becauseitdrawsattentiontointruders orbadactors.Smartlightingneedsto beimplementedsensitivelyandwithan understandingofhowpeoplefeelwithin spaces,howtheyuseandmovewithin spaces,notjusthowtheysee,andnot onlytoenergyconsiderations.
Thenumberandlocationofstreetlightingcolumnsalsorequirescarefulattentionforsmartcitylightinginstallations.Thepolestodayarespacedand arrangedtomeetthelightingrequirements,andsmartnessisanadd-on.If theybecomesmartaccesspointsthat arespacedandarrangedtomeettherequirementsforthesmartcity,andstreet lightingbecomesanadd-on,lightingdesignandthequalityofourlitspaceswill suffer.
LEDprofessional: Thestrategyemphasizestheimportanceofcollaborationacrossvariousfields.Couldyou provideexamplesofinterdisciplinary researcheffortsorpartnershipsthat arecrucialforadvancingtheCIE’s strategicobjectives?
Dr.JenniferVEITCH: Totakeoneexample,it’sbecomingclearerthatour exteriorlightinghasunintendedeffects onotherspeciesandlightexposurein thebiologicalnightisn’tallthatgoodfor humans,either.However,inurbanareas peoplerelyonexteriorlightingtotravel safelyonroadsandtofeelsecureintheir neighborhoods.Weneedtofindthebalancebetweentheseconsiderations,but todothisweneedabetterunderstandingfromecologists,photobiologists, visionscientists,psychologists,illuminatingengineerssothatlightsources, lightingsystems,controls,andthedesignguidancetousethemwiselycanall cometogetherharmoniously.
LEDprofessional: Whatarethemain challengesyoufaceinconducting researchanddevelopingstandards intherapidlyevolvingfieldoflighting technology?
Dr.JenniferVEITCH: Touseanage-old expression:“Themorethingschange, themorethingsstaythesame”.Asal-
ways,researchersstruggletofundtheir research.Industrymaybedoinglotsof in-houseresearch,butfromtheperspectiveofanon-industryresearcheritcan beachallengetoobtainthenecessary fundingforresearchandtosupportthe time(andtravel)toparticipateinstandardsdevelopment.Researchalsotakes time,andIknowthattherehasalways beenadisconnectbetweenthespeed ofresearchandthedesireforspeedy standardsdevelopment.Thisproblem hasbecomeevenmoreofachallenge giventherapiddevelopmentoflighting technologies.Bothofthosethingsbeing said,thechanginglandscapeoflighting togetherwiththeadvancesinunderstandingtheeffectsoflightonpeople andbiologicalsystemsmakesthisavery excitingtime,whichmakestheeffortsto overcomethesechallengesworthwhile.
LEDprofessional: Whatadvicewould youoffertoyoungresearchersand professionalsenteringthefieldof lightingresearch?HowcantheycontributetothegoalsoutlinedintheCIE ResearchStrategy?
Dr.JenniferVEITCH: First,readtheResearchStrategyandbeamazedandexcitedatthebreadthanddepthofatopic manytakeforgranted.Then,choose researchtopicsthatderivefromtheResearchStrategy!Theseareareasthat thecollectivehivemindoftheCIEDivisionshaveidentifiedasfruitfulareas. Asyourworkevolves,takeadvantage oftheCIEmechanismstodevelopyour ideasandobtainfeedback.Presentat CIEevents,joinaCIEResearchForum (forthosetopicsthathaveone),andtake partindiscussionsofyourtopic.Publish yourworkinjournalswherewecanfind it.Astheknowledgeofyourtopicbuilds, lookforCIEtechnicalcommitteeswhere youcancontributeyourunderstanding toconsensusreports,guidelinesand standards.Finally,helpustomakeallof thisworkavailabletotheworld,sothat lightandlightingmaketheirduecontributionstotheachievementoftheUN SDGs.
LEDprofessional: Beyondthetechnicalandscientificaspects,howdoyou hopetheCIEResearchStrategywill influencethebroadersocietalunderstandingorappreciationoflightand lighting?
Dr.JenniferVEITCH: Anyonereading thisisontheinsideofthelightingcom-
munity,butthereisworktobedoneto increasepublicawarenessofhowlight andlightingcontributetoalllifeonearth. DevelopingtheResearchStrategy2023 revealedtoushowstronglyconnected ourworkistotheUNSDGs,whichare themselvesadistillationofsocietal,even planetary,goals.Wecanusethistostart theconversationwitheveryonefrom researchfunderstoregulators,other standardsdevelopers,buildingandinfrastructureprofessionals,publichealth agencies,andthepublicatlarge.As researchfindingscomein,wecanuse theframeworkoftheResearchStrategy themestodeliverupdatedmessages aboutprogress.Inturn,it’smyhopethat wewillreceivefeedbackfromallofthese engagedgroupstoinformthenexteditionoftheResearchStrategy,whichwe wouldexpecttobein2027.
LEDprofessional: Artificialintelligencenowpermeatesmanyareas oflife.HowwillAIinfluencethelightingsector,andistheCIEalreadyaddressingthistopic?
Dr.JenniferVEITCH: TheCIEisnot yetaddressingtheuseofAIinlighting. Thisisnotinmypersonalareaofexpertise,butIwouldthinkthatthereisgood potentialforusingmachinelearningapproachestooptimizeenergyuseand lightingsystemoperation.Iamaware thatthereareindividualresearchersor systemdevelopersengagedinexploringthispossibility,andIhavebeentold thattherearealgorithmsthatcanbe usedtochoosebetweenluminaires, forexampletooptimizemultipledesign parameters.Asweaddparametersto ourrecommendations,suchtoolscould helpdesignerstomanagetheincreasingcomplexityofthetask.Thatsaid, careandsensitivitytouserneedswill remainparamount.Justaswehave learnedthatAItrainingmodelsforfacial recognitionhaveinbredbiases,itislikely
thatwithoutcarefulattentionAI-based toolsforlightingdesignwillnotfulfilthe promiseofdeliveringbetterlightingdesigns.
Wealsoknowthattherearemeasurementdeviceswhichuseformsofartificial intelligencesuchasmachinelearning, look-updatabases,andreconstruction techniquestoproduceasynthesized measurementresult.Thishasimplicationsintermsofmeasurementuncertaintyevaluationandmeasurement traceability,butalsofortheusers:How dotheyknowifsuchadeviceismeasuringsomething“new”andeffectively guessingtheresult?Blindtrustinan AImodelthathasnotearneditwillnot serveuswell.
LEDprofessional: Fromapersonal perspective,whatisyourvisionfor thefutureoflighting?
Dr.JenniferVEITCH: Myvisionisfor moreaccessiblehigh-qualitylightingfor all.Theexpertgroupoflightingdesignerscandogreatwork,butmanyplaces donotbenefitfromtheirexpertise,and almostnoonehasaccesstothisexpertiseforlightingintheirhomes.Weneed tomakeiteasierforeveryonetoexperiencehighqualitylighting,bywhichI meanlightingthatmeetstheirneedsas userswhilerespectingthearchitectural, environmental,andeconomicconsiderationsofthecontext.TheCIEcan’t removeallofthebarriers,butwecan convenetheexpertstodevelopguidanceandwecancommunicatewith ourcollectivevoicesabouthowtoapply it. ■
Foradditionalinformation,pleasevisit https://cie.co.at
AdamLILIEN:
“Forlightingmanufacturersconsidering marketingtheirproductsascircadianlighting solutions,I’dstronglysuggesthavingUL Solutionstestoneoftheirluminairessothatthey becomefamiliarwiththeservice.”
Supportinghealthforbuildingoccupantsthroughindoorlightinghas beenonthehorizonforyears.In2015,industryexpertstoldusthatthe circadianlightingmarketwouldbeamulti-billion-dollarbusinessby2022. Still,thereneedtobemoreprojects,giventheupsideofdeliveringbetter sleeptothepeoplewholiveandworkinbuildings90%oftheirlives.In thisarticle,we’lllookatwhatsciencesays,what’srequiredtoimprove ourhealth,andwhattoolshavebeenmissing.Forthispurpose,we interviewedAdamLilien,globalbusinessdevelopmentmanagerof LightingatULSolutions,whohasbeenworkingtoresolvetheseissues.
LEDprofessional: We’veseen“healthy lighting”asagoalforyears,butit doesn’tseemtobeamovementyet. Whynot?
AdamLILIEN: Changetakestime.We aremovingrelativelyquicklyinthelightingindustry,especiallyintoday’sdiscussion.Thechallengeisthatwearenot movingasquicklyaspossible,negatively impactingpeople’shealth.
LEDprofessional: HowhasULSolutionsapproachedtheissueofacceleratingtheimpactoflightonhealth?
AdamLILIEN: Inlate2019,wepublishedtheULDesignGuideline24480for PromotingCircadianEntrainmentwith LightforDay-ActivePeople.Thatguidelinegavelightingdesignersthe“howto” fordeliveringhealthyspaces.Thedocumenttellsthelightingdesignerwhat tolookforinaluminaire.Forexample, lookingatthehorizontalandverticaldistributionsisessential,asisthespectral powerdistribution(SPD).Thedocument alsoexplainsthesciencebehindthese minimalrequirementssothatthelighting designerbecomesawareofthelaboratoryandfieldstudiesbehindthedocument.Myparticipationindeveloping thedocumentwastopulloutandcodify thesixstepsalightingdesignerneedsto followtoachievethedesigngoals.We calledthisthe“QuickGuide.”Thedocumenthelpededucateandanswerallthe lightingdesigncommunity’squestions.
Wealsospokeatconferences,provided webinars,publishedonsocialmedia,
andprovideddetailsonourwebsite. Thenitwastheindustry’sjobtomake thechange.However,wekepthearing thesamethings:“Makethiseasysowe canuseit.”That’swhenwestartedto askourselves,“What’sneededtomake designinghealthyspaceseasier?”
Ittooksometime,butintheend,we cameupwithseveraltoolsthatwe’ve launchedtoacceleratetheadoptionof healthyspacesinbuildings.
LEDprofessional: Youmentionedthe toolsthatyou’velaunched.Couldyou describethemandaddresswhothey aredesignedtohelp?
AdamLILIEN: WhatULSolutionsdevelopedisaserviceforlightingmanufacturerstoletthelightingdesignersknow thecircadianperformanceoftheirluminaires.Wereportthecircadianscore basedonthreepublishedcalculation methods:
• TheWELLBuildingStandard,based onequivalentmelanopiclux(EML)
• ULDesignGuideline24480,basedon circadianstimulus(CS)
• DIN/TechSpec(TS)67600,basedon melanopicequivalentdaylightilluminance(m-EDI)
Asthisscoremeasuresthe“non-visual” performanceoflighthittingthevertical planeoftheeye,itwastotallydifferent fromanythingthatexisted.Withthis score,thelightingdesignersstarttheir designprocessknowingtheyhaveselectedtherightproducts.Wecallthe
laboratoryresultsthecircadianluminaire score.
Thesecondisaservicethatinformsthe buildingownerofthecurrentscoreof circadianlightingintheirbuilding.Thisis aservicewhereULSolutionscomesto yourfacility,collectsdata,andproduces afloorplanthattellsthelightingdesigner andspaceplannerwherelightis“deliveringthedesireddesigngoal”andwhere thespaceis“belowgoal.”
Withthistool,informationisavailable tounderstandthespaceandresolve theissuesthatarenotvisible.Wecall thistheCircadianFieldMeasurement Service.
LEDprofessional: Canyousharehow thecalculationsaremadeforthecircadianmodels?
AdamLILIEN: Hereisthemostcomplicatedcalculation:theCScalculationthat ispartofULDG24480andisfoundon page46ofthedocument.Thefollowing equationdefinesCS:
CS =0 7 ∗ (1 1 1+( CLA 355 7 )1 1026 )
Perhapsit’sclearwhythelightingdesignersaskedustomakethis“simple.”
LEDprofessional: Howdotheseserviceswork?Aretheyavailablenow?
AdamLILIEN: Yes.Infact,bothofthese serviceslaunched,andweareproviding testresultsforlightingmanufacturers, lightingdesigners,propertyowners,and audienceswedidnotinitiallyexpect.
LEDprofessional: Let’sdiscussthe firstservice.HowdoestheCircadian LuminaireScorework?
AdamLILIEN: Forlightingmanufacturers,ourcircadianluminairelaboratory inAllentown,Pennsylvania(USA),measuresasingleluminaire,capturingthe photonsenteringtheeyeatthevertical plane.Tomakethedatauseful,wemeasureeachluminairetypesimilarly.For example,eachrecessedceilingtroffer isplacedinthesamespotintheceiling; eachwallsconceisinthesamelocation; andeachdesklampismeasured.Over nineluminairetypesaretested;wedefinemorewitheveryrequest.Wethen usethecalculationmethodspublished bythethreeworkingcommittees:
• WELLBuildingStandardV2,basedon EML
• ULDesignGuideline24480,basedon CS
• EuropeanDIN/TechSpec67600, basedonm-EDI
ThisgeneratestheCSoftheluminaire. Wealsocapturedthewattagedrawthe luminairewasusing.TheluminairemanufacturerreceivestheirdatainaULSolutionsletterreport.Afterdeliveringthe letterreports,thelightingmanufacturersrequestedthatwedevelopaway topromotetheirproductstothelightingdesignercommunity.Theyfeltan independentthirdpartywasbetterpositionedtobethetrustedmessenger.
Fortunately,wehavetheanswerand aredevelopingacustomizedsearch templatewithinULProductiQ®.This onlinedatabasecurrentlyservesasthe pointofreferenceformillionsofusers whoneedULCertificationinformation (see Figure 1).
WiththenewCircadiansearchtemplate withinProductiQ,whichwedeveloped inresponsetothemanufacturer’srequestandisnowlaunched,alighting designerwillcometothesiteanduse ourpowerfulparametricsearchtoolsto discoverwhichproductissuitablefor theirupcomingproject.Forexample, first,theyselectthecategoryofluminaire theyarelookingfor,suchasatroffer, pendant,wallsconce,floorlamp,desk lamp,orevenachandelier.Then,they sorttheproductswiththehighscore atthetopbasedontheparametersof theirdesigngoal;forexample,EMLif theyaredesigningforWELLBuilding
Standardpoints,m-EDIiftheirprojectrequirestheEuropeanlightinggoal,orCS ifthedesignrequirementsareseeking thosegoals.AccesstoviewProductiQ requirestheone-timesetupofacomplimentaryaccount,withoptionalpaidfeaturesavailable.Oncetheaccountisset up,customerscangodirectlytothecircadianfeaturesat UL.com/CircadianiQ.
LEDprofessional: YousaidtheCircadianLuminaireScoreservicehas launched.Whatareyoulearning?
AdamLILIEN: We’vedeliveredcircadian scoresfornumerousluminaires,and manufacturerscannowstartusingthe circadiansearchfunctiononProductiQ. See Figure 1.Wewerealsosurprised, asoneofthefirstcustomerswasnota luminairemanufacturerbutamanufacturerofareflectivesurfaceinabuilding. Theirproductshavedifferentreflective scores,andtheywantedtoverifythat thebrightersurfaceincreasedthecircadianscoreofthespace.Wearealso discussingexpandingtheservicetoincludeotherreflectivesurfacessuchas paints,flooring,ceilings,andfurniture.
LEDprofessional: Movingtothesecondservice:HowdoestheCircadian FieldMeasurementServicework?
AdamLILIEN: Wecometoyourfacility anywhereintheworld,collectthedata anddeliverafloorplanindicatingthe circadianscoresforeachspace.
Thereasonwecreatedthisserviceis thatweheardthat,forlargerspaces, theworkneededtobesimplified.Let megiveyouanexample.IfI’malighting designeraskedtomeasurethecurrent circadianscoreofaspaceforacustomer—eitherbecauseofaretrofitand we’rekeepingthelighting,ortheproject hasjustfinished,andwewanttoknow ifweachievedthecorrectlightinglevels —Icanpulloutmyluxmeterandtake afewdozenreadings.That’sgoodfor smallerspacessuchasasmallofficeor aconferenceroom,butwhataboutan ampleofficespace,aschool,orevena hospitalcomplex?
Duetothecomplexityandthepotentialexpense,ULSolutionsdevelopeda datacollectionmethodwherewecan capturethousandsofreadingsinone ortwohours.Weprovidethecustomer withadetailedfloorplan,asillustrated
in Figure 2,indicatingtheCSofeach space,where:
• GREEN=abovegoal
• YELLOW=slightlybelowgoal
• RED=significantlybelowgoal
Figure2: CircadianFieldMeasurement.AfterUL Solutionscollectsthedataatthesite,thelightingdesignercanselectthedesiredcalculation method:EML(WELLBuildingStandard),m-EDI (DIN/TS67600),orCS(ULDG24480).
Alightingdesignerandspaceplanner willnowknowwhattheywanttoalterif anything.WealsodevelopedtheMarketingClaimVerificationaboutVerified SpaceforPromotingCircadianEntrainmentwithLightsothattheproperty ownerorthebusinessoccupyingthe spacecancommunicatetheresultsthey achievedtothepublic.AfterULSolutionsprovidestheCircadianFieldMeasurementService,theULMarkreports theaveragespacescore,whetherit’sa conferenceroom,afloororabuilding (seebelow).
LEDprofessional: Howisthemarket response?Whatareyouseeing?
AdamLILIEN: We’vedeliveredthisservicetooneofthelargestrealestate ownersintheworldandtoamid-sized architectinOhiowithglobalcustomers. Inbothcases,thecustomershavetold usthatthissolvesaproblemtheydid notrealizetheyhad.Althoughtheyare leadersindeliveringhigh-qualitylighting forvisualacuityandcomfortatenergyconsciouslevels,theydidnotanticipate beingabletorateanamplespaceforits circadianhealthscore.Realestateownerswanttooffercircadianlightingtoget
Figure1: CircadianProductiQ®,ULSolutions’onlinesearchdirectoryforproducts,includingluminairestestedbyULSolutionsfortheircircadianscore.
businessestosignamulti-yearlease. Byofferingthissolutionasatenantimprovement,theydon’tevenpayforthe service,asthelightingandcontrolsinnovationisappliedtothetenantimprovementbudget.Theprospectivetenant wantsthecircadianlightingimprovement sothattheycantelltheiremployeesthat theyworkforacompanythatisattentivetooccupants’health.Theyalsouse healthimprovementstorecruittop-tier employees.
Architecturefirmswanttooffertheircustomersscience-baseddesignthatimprovesthehealthofthebuildingoccupants.Whilethebuildingretrofitthey designedmayhavedeliveredexcellentresults,wehavediscoveredthat workersinthespacecouldundothedesign.Asintheexamplefromarecent customer,someoftheofficesinRED scoredsignificantlybelowthedesign goalofCS ≥ 0.3,eventhoughtheywere adjacenttoGREENofficesthatscored abovethegoal.Furtheranalysisrevealed thatthelowerscorewasduetotheoccupantdimmingthelights,alteringthe sensitivityoftheoccupancysensor,and closingthewindowblinds.Asaresult, theyareconsideringULSolutionstodelivereducationtotheofficeworkersso thattheybetterunderstandhowtheofficewasdesignedtodeliverthe“bright day”signalthatisnecessarytoentrain (synchronize)the24.2-hourhumancircadianrhythmtothenaturalcycleofa day(24.0hours).Inessence,theyare modifyingtheircircadianlightingdesign.
LEDprofessional: Whatwouldyoudo nextifyouwerethelightingmanufacturer?
AdamLILIEN: Foralightingmanufacturerconsideringmarketingtheirproductsasacircadianlightingsolution,I’d stronglysuggesthavingULSolutions testoneoftheirluminairessothatthey becomefamiliarwiththeservice.Once tested,lightingdesignerscanfindthe manufacturer’sproductwiththescore andconsiderspecifyingtheproducton theirnextproject.
LEDprofessional: Isthereanyadditionalbenefitforamanufacturerwith acircadianlightingsolution?
AdamLILIEN: Imagineamanufacturergettingspecifiedinaproject.That projectmaybe6monthsout,12months out,oreven18monthsout.Whileall projectshaveariskofthecontractor “valueengineering”theproductatthe lastmoment,whentheprojectresults aredesignedforahealthyoutcome, valueengineeringwon’tbeanoption. Lightingmanufacturerscallthisa“spec lock;”theirproductwillbelockedinto thefinalsolution.
LEDprofessional: HowdidULSolutionsgetstartedonthisadventure?
AdamLILIEN: ULSolutions’involvementstartedbackin2018whenMark ReaoftheLightingResearchCenterat RensselaerPolytechnicInstitute(New
York,USA)cametous.Hehadtheidea toexploreamuch-neededcircadian approachconsideringadifferentsetof parametersthantheothermethods.
WithULStandards&Engagementmanagingtheprocess,theIndustryTask Groupworkedfor18monthstodefine thegoal,discussthescience,andwrite apaper.
Theindustryhadalottosay.ULStandards&Engagementpublishedtheproposedpapertwiceforpubliccomment, andweevenreachedouttoothercountriestocollectotherscientificresponses forconsideration.Onlyafterall350responseswereaddresseddidULStandards&Engagementconsiderpublishingthepaper.InNovemberof2019,the ULDG24480paperwaspublished.
LEDprofessional: WhyULSolutions?
AdamLILIEN: Withourdeepexpertise incircadian-effectivelighting,itmakes sensethatwecontinueonourmission topromotesafer,moresecureandsustainablelivingandworkingenvironments forpeoplethroughtheapplicationofscience. ■
Foradditionalinformation,pleasevisit UL.com/circadian
Dr.SebastianKNOCHE1,ResearcheratTRILUXand Dipl.-Ing.MarinaPROSKE2,ResearcheratFraunhoferIZM
Wearesurroundedbyluminairesand artificiallightalmosteverywhere.The costsarecorrespondinglyhigh:13% oftheGermanelectricityconsumption isusedforlighting.Thisisassociated withhighgreenhousegasemissions. Andourlifecycleassessmentsshow thattheresourceconsumptionforluminairesisofsimilarrelevanceasthe greenhousegasemissions. LifecycleassessmentswereconductedforaselectionofLEDluminaires.Theresultsshowthepotential formakinglightingquantitativelymore sustainable.Ifthedevelopmentofan LEDluminaireisguidedbylifecycle assessments,thispotentialcanbeexploitedinthebestpossibleway. Wealsoinvestigatedstate-of-the-art recyclingprocessesandassessedthe realisticrecyclabilityofluminaires. Here,too,wefoundpotentialforimprovement.Thesecannotbeexploited throughimprovedproductdesign alone,butrequireacoordinatedapproachbetweenmanufacturersandrecyclersforthesimultaneousimprovementofproductdesignandrecycling processes.
“Sustainabledevelopmentisdevelopment thatmeetstheneedsofthepresentwithoutcompromisingtheabilityoffuturegenerationstomeettheirownneeds.”This definitionofsustainabilitybytheUnitedNationsdatesbackto1987 [1].Inessence, thismeanstoactinawaythatwecan continuedoing,basically,forever.
ThefollowingenvironmentalimpactcategoriesareconsideredinourLCAs:
• ADPelements (Abioticdepletionpotentialoftheelements):Utilizationof resources(minerals,metalores)thatare limitedonearth.
1 TRILUXGmbH&Co.KG,Heidestraße4, 59759Arnsberg,Germany sebastian.knoche@trilux.com
2 FraunhoferInstituteforReliabilityand MicrointegrationIZM,Gustav-Meyer-Allee 25,13355Berlin,Germany marina.proske@izm.fraunhofer.de
IntheresearchprojectSUMATRA (Sustainable MaterialsinFutureLuminaireDesigns–from Recyclingbackto Application),theaimistodothingsquantitatively,andnotjusthaveaqualitative discussion.Tothisend,weuseenvironmentalLifeCycleAssessments(LCAs). Inalifecycleassessment,theenvironmentalimpactsthatariseovertheentire lifecycleofaluminairearemeasuredin variousenvironmentalimpactcategories. Thisenablesquantitativecomparisonsto bemadebetweendifferentproductdesigns,sothatitcanbepreciselystated whethervariantAorvariantBcausesthe lowerenvironmentalimpactforproviding thesamebenefit.However,itisnotpossibletomakeastatementontheabsolute achievementofsustainability,asthiswould requireacomparisonofthedetermined environmentalimpactsofaluminairewith amaximumlevelthatisconsideredacceptable.Thismaximumlevel,called“Safe OperatingSpace”inthescientificliterature ofPlanetaryBoundaries [2,3,4],isdifficult todetermineforasingleluminaire.
• ADPfossil (Abioticdepletionpotential ofthefossils):Consumptionoffossilraw materials(oil,coal,gas),whicharefinite onearth.
• GWP (GlobalWarmingPotential):Emissionofgreenhousegases,measuredin kgCO2 equivalent.
• Toxicities (FreshWater/Marine/Terrestrial/Human):Releaseoftoxicsubstances.
• AP (Acidificationpotential):Emissionof substancessuchassulfurdioxide,which causeacidrain,forexample.
• EP (EutrophicationPotential):Water bodiesbeingenrichedwithnutrients (e.g.phosphates);whichhasadverseeffectssuchasalgalblooms,forexample.
• ODP (OzoneDepletionPotential):Depletionoftheozonelayerinthestratosphere(whichisournaturalUV-Cblocker onearth).
• POCP (PhotochemicalOzoneCreation): Creationofozoneneartheground, whichishighlyreactiveandhasadverse healtheffectswheninhaled.
TheSUMATRAConsortium
TheSUMATRAresearchconsortium consistedof:
• TRILUXGmbH&Co.KG: Dr.SebastianKnoche,HorstRudolph, SonjaBeckmann,GregorGroteSchulte,FelixBruchhage,Katrin Discher,TorbenTillmann
• InventronicsGmbH: JürgenSchwarz,MarkusZiegler,Peter Kulf,BernhardOrben,MarkusHeckmann,ReinhardLecheler
• InterzeroCircularSolutionsGermany GmbH: CarlaKrätz,TorbenKabbe
• Fraunhofer-InstitutfürZuverlässigkeit undMikrointegration(IZM): MarinaProske,JanaRückschloss, OtmarDeubzer
• AssociatedpartnerKardorffIngenieure LichtplanungGmbH: GabrielevonKardorff
Theresearchprojectwasconducted fromJune2021toSeptember2023 andreceivedfundingfromtheGerman FederalMinistryforEconomicAffairsand ClimateAction.Theresponsibilityforthe contentofthispublicationlieswiththe authors.
However,inthefirstindicativelifecycle assessments,wefoundthatmostimpact categoriesareverysimilarlydistributed andabout95%ofthemoriginatefromthe electricityconsumptionintheusephase. Itisthereforesufficienttoselectonerepresentativefortheseimpactcategories.Our choiceistofocusonthe GlobalWarmingPotential(GWP).TheGWPcanbe reduceddirectlybyincreasingenergyefficiency.
Asecondmetricthatisinthefocusofour considerationsisthe AbioticDepletion Potentialoftheelements(ADPe).In contrasttotheGWP,largecontributions occurintheproductionphaseoftheluminaireduetothematerialsused.TheADP isthereforerelatedto materialefficiency Thiscomplementstheaspectmentioned first,(GWP/energyefficiency)inameaningfulway.
Thereisabroadconsensusamongscientiststhatclimatechangeisextremely importantforourlifeonearth,asthere-
PartoftheSumatrateam:KlausRöwekamp,TorbenKabbe,MarinaProske,PeterKulf,SonjaBeckmann, SebastianKnoche,CarlaKrätz,KatrinDischer,MarkusZiegler,GregorGroteschulte,BorisSafner,Bernhard Orben,andJürgenSchwarz(lefttoright).
portsoftheIPCC(IntergovernmentalPanel onClimateChange)andtheirbroadauthorshipshow [5] Figure 1 showsthe evolutionoftheglobalmeansurfacetemperatureoverthepast24,000years.Large differencesarevisible;butthelast10,000 yearshavebeeninaverystableconditionwithvariancesofjust ±0.5 ◦C [6].This epochinearth’shistoryiscalled Holocene Agricultureandadvancedcivilizationsdevelopedduringthisepoch,anditisconsideredthereferencepointofadesirable planet [3]
Itiswellknownthatglobalwarmingis mainlydrivenbyhumanactivities:emissionofgreenhousegases,primarilyCO2 fromtheburningoffossilfuels [7].Other greenhousegases,likemethane,alsocontribute.Theseothergreenhousegasesare
convertedtotheir CO2 equivalent [8],i.e. totheamountofCO2 emissionsthatwould givethesameglobalwarmingeffect.All greenhousegasemissionsarethenaggregatedinanLCAtodeterminetheglobal warmingpotential,measuredinkgCO2 equivalent.
Humansextractrawmaterials(chemical elementsandcompounds)thatarestored intheearth’scrust,andusethemtobuild thingsthathaveafunctionforthem.This approachcanbeinconflictwiththeprincipleofsustainability,asresourcesare limitedandnon-renewable,i.e.theyarenot continuouslyproducedintheearth.
InanLCA,themetricformeasuringabiotic resourceconsumptionisthe Abiotic
Figure1: GlobalMeanSurfaceTemperature(GMST)changeoverthelast24,000years,reconstructedfrom proxies(blueareas)andtemperaturemeasurements(line)[5].
DepletionPotentialoftheElements [9,10,11].Allabioticresourcesusedduring thelifecycleofaproductareassigned aweightingfactor.Thisweightingfactor describesthescarcityofaresourceandis calculatedfromthetotalquantity R inthe earth’scrust(“ultimatereserve”,inkg)and thecurrentextractionrate DR (inkg/year).
Foraresource i itreads:
ADPi = DRi⁄R2 i DRref⁄R2 ref (1) Thereferenceelementisantimony(chemicalsymbolSb).Thus,theunitfortheAbioticDepletionPotentialoftheelementsis kgSbequivalent
Theweightingfactorsdifferbymanyorders ofmagnitude.Forexample,aluminum,the thirdmostcommonelementintheearth’s crust,hasaweightingfactorof ADPAl = 1 09 × 10 9 kgSb−eq./kg. Incontrast,goldhasaweightingfactorof ADPAu = 52kgSb−eq./kg,seereference [9]
WeperformedLCAsforeightluminaires ofvarioustypesproducedforprofessional applications.Theyhavelifetimes(declared
bythemanufacturer)of 50,000–100,000 h, luminousfluxesbetween 2,200 lmand 26,700 lmandefficaciesbetween 110 lm/W and 179 lm/W.
Someofthemaredimmableandcanbe controlledbymeansoftheDALIprotocol. However,theusephaseforallofthem wasmodelledasaconstantoperationat 100%dimmingleveloverthefulllifetime. Wecalculatedwithastaticelectricitymix (Germany2019).
Backgrounddatawastakenfromthe SpheraLCAforexperts® database.
Packaging,transporttothecustomerand theend-of-lifetreatmenthavebeenconsidered,andwefoundthemtobeofminor relevance.Forthesakeofclarity,theyare omittedinthefollowingpresentationofthe resultsandanalysisofhotspots.
Figure 2 showstheresultsofthelifecycleassessment.Letusfocusourattention ontheabsolutevalues(upperrowofdiagrams)first.
Theglobalwarmingpotentialrangesbetween 470 kgand 5,000 kgCO2-equivalent. Strikingly,theshareoftheproduction phaseisverylow,onlybetween1%and 5%.Includedhereisthecompletesupply
chainuptotherawmaterialmining.The vastmajorityofgreenhousegasemissions occursduringtheusephase,i.e.inorder toproducetheelectricityconsumedbythe luminaire.
Inthediagramontherighthandside,it isdiscerniblethattheabioticdepletion potentialisdominatedbytheproduction phase;morespecificallybytheelectronic components(LEDmodule,controlgear, wiring).Optics(mostlymadefromtransparentplasticslikePMMAorPC)andhousings(mostlysteeloraluminum)haveonly smallcontributions.Fromtheabioticresourceperspective,itseemsthatthelarge amountsofsteeloraluminuminahousing havelessimpactthanthesmallamounts ofcopperortinyamountsofpreciousmetalsintheelectronics.Thereisalsoacontributionoftheusephasetotheabiotic depletionpotential.Thiscomesfromthe electricityconsumption,notfromspare parts.Electricitygenerationalsoconsumes abioticresources,forbuildinginfrastructure,powerplants,solarpanels,andsoon.
Inbothimpactcategories,thehigh-bay luminairestandsoutinparticular.Interms ofglobalwarmingpotential,thisismainly duetothehighpowerandintermsofabioticresourceconsumptionduetothehigh numberofLEDs.Butthatresultsinalot oflight(26,700 lmand 70,000 hlifetime).
Figure2: OverviewoftheLifeCycleAssessmentresults.Theupperrowshowstheabsolutevaluesoftheenvironmentalimpacts;thelowerrowshowsthe environmentalimpactsnormalizedtoequalfluxof1,000lmandequalusetimeof1,000h.
Therefore,inadditiontotheabsoluterepresentation,standardizedrepresentationsfor identicalluminousfluxandidenticallifetime arealsoveryuseful.Forthisfunctionalunit, wechose 1,000 lmand 1,000 hofoperation.Theresultsareshowninthelower rowof Figure 6
Inthisrepresentation,thehigh-bayluminaireappearsrelativelysustainablecomparedwithotherluminairearchitectures. Nowthewall-mountedluminairehasthe highestimpactsinbothcategories.The wall-mountedluminaireconsistsofalarge LEDmodule(300 mmindiameter)anda bigopalcover.Itsluminousfluxisrelativelylow(2,200 lm)andsoisitsluminous efficacy(110 lm/W).Thisexplainstherelativelylargeenvironmentalimpactsper 1,000 lmand 1,000 h.
Itmaybeusefultodeducean“average” luminairefromtheresults,forexample,to getaroughestimateoftheenvironmental impactsoflightinginacompletebuilding whennodetaileddataisavailable,orto startbuildinganintuitiveunderstandingof luminaireLCAs.Astheselectedluminaires arenotrepresentativeofallexistingLEDluminaires,anexactcalculationofthemean valuemakeslittlesense.Inlightoftheunavoidableinaccuracy,the“smoothest” valuespossiblearethereforeselected,see Table 1
GWP 3 kgCO2−eq.
ADP 6 × 10 6 kgSb−eq.
Table1: Estimatedaverageenvironmentalimpactsofprofessionallightingper1,000lm 1,000h.
Anaveragebreakdownoftheenvironmentalimpactstothedifferentphasesand componentsisshownin Figure 3
Figure3: Averagebreakdownofglobalwarming potential(left)andabioticdepletionpotential (right)foraprofessionalLEDluminaire.
Itisanintriguingquestion,whetherthe globalwarmingpotentialorabioticdepletionpotentialcausedbyaluminaireis “moreimportant”.Obviously,bothmetricsusedifferentunitsandcannotbe compareddirectly.Infact,theydescribe completelydifferenteffects,andanycomparisonisalwayssubjective.However,a comparisonwithnormalizationfactors(NF) providesafirstindication.Thenormaliza-
tionfactorsarerecommendedbytheJoint ResearchCentre(JRC)oftheEuropean Commissionfortheevaluationofenvironmentalfootprintsanddescribetheglobal environmentalimpactofallhumanactivities (determinedfor2010),percapita [12]
Thecomparisonmadein Table 2 shows thattheclimatechangepotentialofan LEDluminairehasahighershareofthe normalizationfactor(13%)thantheabiotic resourceconsumption(3%).However, theproportionsareofasimilarorderof magnitude–LCAresultsoftenshowmuch moredrasticdifferences.Wetherefore concludethatbothenvironmentalimpact categoriesareequallyrelevantandthatthe eco-designofLEDluminairesshouldaimto reducebothenvironmentalimpacts.
Figure4: AbioticDepletionPotentialforLED modulesofdifferentgeometryandwithdifferent LEDtype.
ThustheanalysisincludestwoLEDtypes thatmayrequiremoreexplanation.IntraditionalLEDarchitectures,bondwires,that aremadefromagoldalloy,areusedto contacttheemitterchip.Morerecently, LEDswithflip-chiptechnologyhavebeen introducedtothemarket.Inthem,the emitterchipiscontactedbysolderbumps frombelow,thussavingthegoldforthe bondwire.See Figure 5 foramicroscopy imageofthetwoLEDtypes.
Table2: Comparisonofaverageenvironmental impactsforoneluminairewiththenormalization factorNF.
Astheportfoliooverview(Figure 2)shows, theLEDmodulecanbethelargestcontributiontotheabioticdepletionpotential.TheLCAofanLEDmoduledepends onthreefactors:Thesurfaceareaofthe printedcircuitboard(PCB),thetypeof LEDs,andtheiramount.
TheresultsforexemplaryLEDmodules areshownin Figure 4.Adistinctionis madebetweendifferentLEDtypes(flipchip /bondwire)andtwoPCBlayoutseither linear(71 9 cmx 2 3 cm,equippedwith96 LEDs)orlargearea(33 6 cmindiameter, equippedwith64LEDs).Thefourpossible combinationsleadtosignificantlydifferent environmentalimpacts.
Acomparisonofthescenarioswithand withoutbondwirein Figure 4 showsthat almosttheentireabioticresourceconsumptionofLEDsiscausedbythebond wire.Materialsforthechip(e.g.gallium)or forthephosphors(e.g.rareearthelements) appeartoplayaminorrole.
Thefollowingconclusiononsustainable LEDmoduledesigncanbedrawn:
Figure6: Correlationoftheglobalwarmingpotential(toprow)andabioticdepletionpotential(bottomrow) fortheproductionofanECGwithitspower,weight,areaandvolume.
• Flip-chipLEDshaveasignificantlylower abioticresourceconsumptionthanLEDs withbondingwireandaretherefore preferable.
• ThesurfaceareaoftheLEDmoduleis relevantandshouldbekeptassmallas possible.
Theelectroniccontrolgear(ECG)ofaluminairehasacomplexstructureandconsists ofaprintedcircuitboardwithalargenumberofelectroniccomponents.Aproperlife cycleassessmentisonlypossibleifthebill ofmaterialsisavailable.IntheSUMATRA project,thiswasthecasebytheclosecollaborationoftheconsortium.
Intheportfoliooverview(Figure 2),we canseethattheproductionoftheECG oftenhasamajorimpactontheabiotic depletionpotential.Whatarethedriving factorsbehindthisresult?
Figure 7 showstheresultfordifferent seriesofECGs.Withinthesameseries (connectedbybluelines),wefindthatthe ADPincreasesonlyslightlywithincreasing nominaloutputpower.Acomparisonofa dimmableandaswitchableECGshows thattheswitchableECGconsumesaround 30%lessresources( → ).Wealso assessedanECGwithsafetyextralow voltage(SELV).Duetotheadditionalinsulationstagesintheinternalstructure,it hasaslightlyhigherabioticresourceconsumptionthancomparablenon-SELVdevices,thedifferenceisapproximately25% ( → ).
Figure7: AbioticdepletionpotentialfortheproductionofdifferentECGs.Outdoordevices( ), dimmableindoordeviceswithalinearformfactor ( ),non-dimmabledevice( )andadevicewith safetyextra-lowvoltage( )wereinvestigated.
parametersthatareusuallypartofthedata sheet.Theresultsareshownin Figure 6
Itcanbeseenthattheenvironmentalimpactdoesnotcorrelatewiththenominal outputpower;otherfactorsappeartobe moreimportant.Thereisalsonostrong correlationwithweight,astheECGmass isdrivenbythehousing,pottingorheavy capacitors,whereastheenvironmentalimpactsaredrivenbythesmall,butcomplex, microelectronicscomponents.Thecorrelationswithareaandvolumearereasonable andcanbeusedforasimplelinearmodel. Forelectronics,scalingwiththebasearea isoftenchosen.Inourcase,however,we usevolumeasaparameterforthefinal model.Foranotherwiseunknowndevice, thevaluesforGWPandADPcanbeestimatedbasedonthevolume V (incm3)of theECGasfollows:
GWP = V 0 0089 kgCO2−eq./cm3 +1 94 kgCO2−eq. (2) ADP =
duetothereductionofcoalandgas-fired powerplants.Ontheotherhand,theabioticdepletionpotentialperkWhincreases, whichisparticularlyinfluencedbytheincreasinguseofphotovoltaics.
Sincethevarianceamongcommercially availableECGsisverylarge,afurthergeneralizationoftheresultsisdesirableinordertoestimatetheenvironmentalimpacts fortheproductionofanunknownECG.To thisend,weanalyzedwhethertheenvironmentalimpactscorrelatewithvarious
Thisresultsinroot-mean-squaredeviationsof ±0 5 kgCO2−eq.and ±8 8 × 10 5 kgSb−eq.respectively,betweenthe regressionlineandthedatapoints(seethin linesin Figure 6).
Fortheusephaseoftheluminaire,weconsideranoperationat100%dimminglevel overthelifetimeoftheluminaire.Repair andmaintenancearenottakenintoaccount,sincealltheluminairesaredesigned toworkfortheirentirelifetimewithoutany replacementofECGorLEDmodule.
Calculationofthebaselinescenarioofthe usephaseisstraightforward:Takethetotalelectricalenergyconsumed(inkWh), andmultiplyitbytheemissionfactors (kgCO2−eq.perkWhandkgSb−eq.per kWh,respectively).PubliclyavailableemissionfactorsforthegridmixinGermany canbefoundinreference [13],forexample,butonlyforGWP.IntheSUMATRA project,however,westicktothevaluesincludedintheSphera® database,whichwe cannotdisclosehere.
Europeisinthemiddleofanenergytransitiontowardsrenewables.Thecalculation oftheusephaseinsuchascenarioismore complex,becausetheemissionfactors varyovertime.Basedonascenariofor theenergytransitioninGermany,termed “KN50”inreference [14],wecalculated theannualemissionfactors,see Figure 8 TheglobalwarmingpotentialperkWhof electricitydecreasesoverthecomingyears
Figure8: EnergytransitionscenarioinGermany anditsenvironmentalimpacts.
Calculationoftheenvironmentalimpactsof theusephaseintheenergytransitionscenarioisnowfeasible:Foreachyear,take theelectricalenergyconsumedandmultiplyitbytheemissionfactorsvalidforthat year,andsumupallyearsofoperation.
Obviously,theresultingtotalswillnowalso dependontheyearwhentheluminaire wasputintooperation,theannualoperatinghours,anditsusagetimeintheapplication.
Thiscalculationprocesscanbemapped toeffectivevaluesfortheemissionfactors.Theyaresummarizedin Table 3 and correspondtoanaverageovertheperiodofuse.Thefirstsectionof Table 3 definesfourusescenarioswithdifferent annualoperationhours [15].Inthesecondsection,wedemonstratehowlong theperiodofuseofaluminaireactuallyis: Aluminairewith 100,000 hoursassigned lifetimecouldbeusedfor40yearsinan officeapplication–e.g.fromyear2020 toyear2060.Finally,thethirdandfourth sectionsof Table 3 presenttheeffective emissionfactors.Wecanobserveahigh varianceinthevalues,dependingonthe assignedlifetimeandapplicationscenario. Forexample,theglobalwarmingpotential fortheGermanelectricitymixiscurrentlya
littlebelow 500 gCO2−eq./kWh,seeReference [13].Foraluminairewith 50,000 h assignedlifetime,beingputintoa24/7operationin2020,wehaveaneffectiveemissionfactorofabout 400 gCO2−eq./kWh duringthe5.7yearsofuse.Incontrast,a luminairewith 100,000 hassignedlifetime, beingputintoanofficeapplication,willonly useaneffectiveemissionfactorofabout 140 gCO2−eq./kWhduringits40yearsof use.
Annualstandardoperationhours
Office Industry Retail 24/7
2,500h/a 4,000h/a 5,000h/a 8,760h/a Periodofuse(years)
Assigned lifetime 2,500h/a 4,000h/a 5,000h/a 8,760h/a
50,000h 20a 12.5a 10a 5.7a 70,000h 28a
EffectiveGWP[kgCO2-eq./kWh]
Assigned lifetime 2,500h/a 4,000h/a 5,000h/a 8,760h/a
Table3: Annualstandardoperationhours,period ofuse,andeffectiveemissionfactorsforglobal warmingpotentialandabioticdepletionpotential (luminairebeingplacedintooperationin2020).
Themostintensivelydiscussedenvironmentalimpactisprobablytheglobalwarmingpotential.Wehaveshownthatthe usephaseofaluminairehasthedominantinfluence.Thevalueoftheemitted CO2-equivalentsdependssensitivelyon theelectricitygridmix.Bothregionand timeinfluencetheemissionfactorsofthe gridmix,whichcanvarytoagreatextent. WhencomparingtheCO2-footprintsoftwo luminaires,carefulconsiderationofthegrid mixesisnecessary.
Whenusingsameassumptions(likegrid mixes),theresultsfortheglobalwarmingpotentialarequiterobust.However, wehaveexperiencedlargeuncertainties intheresultsfortheabioticdepletionpotential.ADPresultsarehighlysensitiveto evensmallamountsofpreciousmetals, e.g.inelectronics.Quantifyingtheexact contentofnoblemetalsisdifficult,since theexactmaterialcompositionoftheelectronicscomponentsareoftennotknown bytheluminairemanufacturer;andthe suppliersareofteninterestedinkeeping thisinformationconfidential.Usingestablisheddatasetsforelectronicscomponents,likeSphera® orEcoinvent®,isa feasibleworkaround,butleadstouncertainties.Itcanbeshown,thatthechoice oflifecycleinventorydatabasecanleadto
differenthotspotsintheLCA,especiallyfor otherimpactcategoriesthanGWP [16,17]
Estimatingtheabioticresourcedepletion bymeansoftheADPmetrichaseven morefundamentalchallenges.Forexample,thevaluesfor DR and R arenot fixedonce-and-for-all,butaretimedependent [11].Moreover,itisquestionableifall thedifferentabioticresourcesshouldbe aggregated,asonedepletedresourcecannotnecessarilybereplacedbyanotherone thatisstillavailable.
Anotherlimitationofouranalysisliesinthe selectionofenvironmentalimpactmetrics. Wefocusedontheglobalwarmingpotentialandtheabioticdepletionpotential.This choicewasmadeafterascreeningofthe resultsfor12impactcategories.However, theremightstillberelevantenvironmentalimpactsthatwerenotwithinthescope ofourfirstscreening.Afrequentlyasked questionconcernstheinclusionofthedestructionofnatureduringmaterialmining. Thisverydirectimpactontheplanet,likein open-pitminingformetalores,isneitherincludedintheglobalwarmingpotential,nor intheabioticdepletionpotential.Further metricsonland-useorland-usechange couldbeinvestigatedtoaccountforthis. Forotheraspectslikelossofbiodiversity, thereisnotyetawidelyestablishedindicator.
Recyclingisonespecificformofwaste treatment.Ashortexplanationofthecommontermsseemstobeappropriateto enableprecisecommunication. Waste is asubstanceorobjectthattheholderdiscardsorintendsorisrequiredtodiscard. Wastecanbesentto recovery operations, whereitservesausefulpurpose.Oneform is energyrecovery,i.e.incinerationor processingtofuels,anotherformis materialrecovery.Thelattercanbedivided into(preparingfor) re-use, recycling and backfilling.Thisdefinesrecyclingasarecoveryoperationbywhichwastematerials arereprocessedintoproducts,materials orsubstanceswhetherfortheoriginalor otherpurposes,excludingenergyrecovery orbackfilling [18]
Theterm“recyclability”isevenmoredifficulttograspthantheterm“recycling”. Inliterature,adistinctionismadebetween [19]:
• Theoreticalrecyclability (ofthematerialitself)
• Technicalrecyclability
(thematerialmustalsobeabletobe identifiedandseparated)
• Realisticrecyclability (collectionsystemsandsortingfacilities mustbeavailable,andactualpollution ofthematerialsmustbetakenintoaccount)
Internationalstandards [18,20] require manufacturerstoreporttherealisticrecyclabilityoftheirproductsasanenvironmentalclaim,notthepurelytheoretical recyclability.
ReferenceEnd-of-LifeTreatment Scenario
Thecentralelementofarealisticrecyclabilityassessmentisareferenceendof-lifetreatmentscenario [18].Thereis notyetastandardizedreferencescenarioforluminaires.BasedonthestandardEN45555 [18] andapublication thatcarriesouttheprocedureforsmartphones [21],suchascenariowasdevelopedintheSUMATRAproject,see Figure 9
Inourproposedscenario,luminairesare collectedtogetherwithothersmallorlarge electricalappliances.TheEuropeanWEEE Directive2012/19/EUestablishessome minimumrequirementsfortherecycling, especiallytheselectivetreatmentof [22]
• Printedcircuitboardslargerthan 10 cm2
• Plasticswithbrominatedflameretardants
• Gasdischargelamps
• Batteries
• Externalelectricalcables
• PCB-containingcapacitors.
Inpractice,itappearsthatlamps,componentscontainingharmfulsubstances andbatteriesareremovedmanuallybeforeshredding.FormostLEDluminaires (withoutemergencylightingbatteries,no PCB-containingcapacitors),itcanbeassumedthattheyareshreddeddirectlywithoutmanualtreatment.Therequirement forselectivetreatmentisfulfilledbysubsequentsorting.
Figure 10 showstheresultofshredding andsortingusingtheexampleofaweatherproofluminairewhichwassentthrough theprocess.Itcanbeseenthattheferrousandnon-ferrousmetalsaresortedout well,thenon-ferrousmetalfractioncontainingprintedcircuitboardsfromtheECG andLEDmodule.Onlysmallquantitiesof plasticsareseparatedintoanownfraction. Thelargestproportionofplasticsendsup intheresiduals,whichthenonlygotoincineration,thusescapingmaterialrecovery.
Figure9: Proposedreferenceend-of-lifetreatmentscenarioforrecyclabilityassessmentsofLEDluminairesbasedonEN45555.
Therearetworeasonsforthisloss.Firstly, theshreddingprocessesmaterialslike plastics(butalsoglass)intoverysmallfragmentsthatarealmostimpossibletosort out.Secondly,onlycertaintypesofplastics(targetplastics)aresortedout.The polymersPCandPMMA,whichareprimarilyusedintheluminaires,arepresumablynosuchtargetplastics,astheyoccur ininsufficientquantitiesintheoverallwaste streamofsmallorlargeelectricappliances.
Theseresultsconfirmthedatathatwas determinedinIECTechnicalReport62635 backin2012 [23].Recyclingratesforspecificmaterialgroupsaretabulatedthere. ThedatawascollectedinEuropebetween 2005and2008andrelatestotheproduct groupsofsmallandlargehouseholdappliances,ITandtelecommunicationsequipmentandconsumerelectronics.Here,too, itcanbeseenthattheplasticsPCand
PMMA,whicharerelevantforluminaires, arenolongerrecycledaftershredding. OnlytheplasticsABS,PP,HIPSandPE arerecycledaftershredding.
EN45555usesamass-basedapproach todefinetherecyclabilityrate Rcyc ofa product [18]:
Rcyc = ∑ mk R
where mtot isthetotalproductmass,the sumrunsoverallmaterials k,with mk beingthemassofmaterial k and Rcyc,k beingitsrecyclabilityfactor.Therecyclability factorsforeachmaterialshallincludethe efficiencyofthestepsofthereferenceendof-lifetreatmentscenario [18]
Figure10: Outputoftheshreddingandsortingprocessforonesingleweatherproofluminaire(length1.2m, weight2.3kg,housingmadefromgreypolycarbonateandopticsfromclearpolycarbonate.
Asnomorerecentliteraturevaluesforthe recyclingratesofspecificmaterialgroups couldbeidentified,theratesofIEC/TR 62635:2012 [23] areusedfortherecyclabilityfactors.Materiallossesaretaken intoaccount:forexample,steelisintheory completelyrecyclable,butduetolossesto otherfractionscausedbyimperfectsorting, aneffectiverecyclingrateof94%isused.
Therecyclabilityassessmentrequiresa detailedbillofmaterialsandweightsof theluminaire.Formanymechanicaland opticalparts,thisisquitesimple,asthey consistoffewmaterials.ForECGsand LEDmodules,ontheotherhand,itisquite challenging.Therefore,westudiedthe materialcompositionof2LEDmodules and4ECGsindetail,toderiveexemplary recyclabilityfactorsfortheseparts,see Table 4
Table4: Recyclabilityfactors(percentageby weight)ofvariouselectroniccomponentsof luminaires.
ForLEDmodules,itwasassumedthat theirfinaltreatmentstepisthecopper
smelter.Therecyclingratesinthecoppersmelterforthevariousmetals(copper, preciousmetals,lead,tin,nickel,antimony) weretakenfromtheliterature [24].The materialcompositionofLEDmoduleswas determinedwithsuppliers,butarenotreproducedhereforreasonsofconfidentiality.TherecyclingratesforLEDmodules rangefrom8%(foraluminumcorePCBs) to11%(forepoxyresinPCBs),whichis evenlowerthanthestandardvaluesfor printedcircuitboardsclassifiedas“poor” inIEC/TR62635:2012.Themainrecyclingyieldcomesfromcopperandtin. RareearthsfromtheLEDs’phosphorsare lostinthecoppersmelter,asisthePCB substrate(whichmakesupthelargestproportionbyweight).However,themetals recoveredfromtheLEDmodulearealso themost“precious”materialsandhavethe highestabioticresourcedepletionpotential.
ForECGs,weassumethatthesteelhousingandprintedcircuitboardareseparated intheshredder,withthehousinggoing tothesteelworksandthecircuitboardto thecoppersmelterforthefinalrecycling. Themaincontributionstotherecyclability factorarethesheetmetalhousingandthe copperfromthePCBandlargercomponentssuchasinductors.PottedECGs, oftenfoundinoutdoorapplications,are critical,astheycannotbeseparatedby shredding.WeassumethattheseECGs aresortedas“non-ferrousmetals”despite theheavypottingcompoundandendup inthecoppersmelter,wherecopperand preciousmetalsarerecoveredwhilethe pottingcompoundburns(i.e.contributes toenergyrecovery,notrecycling).
Anexampleofacompleteluminaireassessmentisshownin Table 5.Inthiscase, theweatherproofluminaireobtainsarecyclabilityof37%.Themainlossesarethe polycarbonateopticsandhousing.Though
Table5: TemplatefortherecyclabilityassessmentbasedonEN45555,completedforaweatherproof luminaire.Thecentralresultisthevalue37%incell Rcyc/sum.Thetwocolumnsontherightrepeatthe assessmentforthetheoreticalbestcase.
theoreticallyrecyclable,beingathermoplast,itiscountedas0%recycledinthe referenceend-of-lifetreatmentscenario. ThisisduetotheinitialshreddingincombinationwiththeliteraturedataofIEC/ TR62635:2012indicatingthatPCisnot recycledaftershredding.
Todemonstratethelargepotentialthat liesinoptimizingtherecyclingprocesses, Table 5 alsoshowsthetheoreticalbest case,basedontherecyclabilityofthematerialitself.Inthisscenario,therecyclability oftheweatherproofluminairerisesfrom 37%(realistic)to91%(bestcase).This scenariocouldbereachede.g.bymanual orroboticdisassemblyandsorting.Incurrentrecyclingpractices,thisseemstobe notviableforeconomicreasons.
Weconductedassessmentsfortenluminaires.Theresultsaresummarizedin Figure 11.Therealisticrecyclabilityvaries between22%and84%,andisprimarily influencedbythecontentsofplasticsinthe opticsandmechanicalstructure.Other majorlossesintherecyclingareglass sheets(e.g.inluminaireC).Theratherlow
recyclabilityofLEDmodulesandECGs haveanimpactontheoverallrecyclability, especiallyforsmallluminaireslikedownlights(luminaireF)orwhentheLEDmodule isrelativelylargeandheavy(e.g.luminaire H).
Wepresentedourmethodoftherecyclabilityassessmentindetail,becausewe wanttoenablethelightingcommunityto harmonizethiskindofassessment.This isnecessarytomakefairandcomparable claimsabouttherecyclabilityofluminaires. Averyimportantpartoftheinformationlies withinthemethod;notthereportedvalue alone.Today,luminairemanufacturersare foundtousedifferentmethodstodefine “their”notionofrecyclability,andexamples ofenvironmentalclaimscanbefoundthat areevenmoreeuphemisticthanthe“theoreticalbestcase”presentedin Table 5
Theinternationalstandardsagreethatan assessmentoftherealisticrecyclabilityof aproductisrequired.However,astandardizedreferenceend-of-lifetreatment scenarioandmaterial-specificrecyclability
Figure11: Realisticrecyclabilityresultsfortenluminaires.Theleftcolumnshowsthemassesoftheluminairecomponentsinitsoriginalstate,andtherightcolumn showstheweightofmaterialsrecoveredintherecyclingprocess.Componentsbelongingtothemechanicalstructureareblue(mostlymetals),wiringred,optical componentsorange(mostlyplastics),andelectronicsgray.
factorsarenotyetestablishedforluminaires.ThestandardEN45555is,infact, nottobeapplieddirectlyfortherecyclabilityassessmentofproducts,butshallserve asamethodforwritingproductorproductgroupstandards [18].IntheSUMATRA researchproject,wetookashort-cut,proposedanend-of-lifetreatmentscenario, andperformedtherecyclabilityassessment directly.
Luminairesandlightingdohavesignificantenvironmentalimpacts.Therelevance fortheglobalwarmingpotentialisobviousfromthestatisticsofenergyusage: 13%ofGermany’selectricityisusedfor lighting [25];andtheenergysectoristhe majoremitterofgreenhousegasesinGermany [26].Ourlifecycleassessmenthas shownthattheabioticresourcedepletionis ofsimilarrelevanceastheglobalwarming potentialwhencomparedtonormalization factors,see Table 2.Thisfindingmightnot correspondwithourintuitionbecauseluminairesseemtobequite“simple”technology.Andofcourse,smartphones,laptops, orelectricvehiclescontaincertainlymore preciousmaterialsthanaluminaire.But thinkabouthowubiquitousluminairesare inourbuiltenvironment.Howmanyluminaires,perperson,areinourhomes,atour workplaces,inthestreets?
Lightisaverycommonproduct,and needscarefulconsiderationtomakeit
assustainableaspossible.Afteryears ofclosecollaboration,theSUMATRAresearchersagreedon9recommendations forlightingindustryandpolicymakerspresentedinthe RecommendationBox below.Someoftherecommendationsare concludedfromresearchactivitiesthat werenotpresentedinthisarticle.
Therecommendationsincludeacallfor moreaccuratelifecycleassessmentdata, especiallyofelectronicscomponentslike theLEDmodules.Thisdataisdifficultto obtainforaluminairemanufacturer,and shouldbecommunicatedalongthesupplychain.Onlythen,reliableLCAresults areachievableandinformeddecisions formoresustainableproductdesignsare possible.Interestinthiskindofdatawill increase,asmoreandmorecompanieswill berequiredtoreporttheirenvironmental impacts,includingscope3(supplychain emissionsandthoseassociatedwiththe useoftheirproducts).
OneoftheoriginalgoalsoftheSUMATRA projectwastodesignaluminairewithits end-of-lifeinfocus.However,thereislittlesenseinoptimizingaluminaireforthe shreddingprocessoftoday’srecycling practices.Recycling,initscurrentform, seemstobeoneoftheleastfavorablecircularityoptions,itisratherthelastresort thanthefirstchoice.Weconcludeourresearchontherecyclabilityofluminaires withacallthatcoordinatedactivitiesbetweenmanufacturersandrecyclersare
Withtheserecommendations,wewanttoboosttheeffortsofturningthe lightingbusinessintoamoresustainablefuture,evenifsomedetailsare stillunclear.TherecommendationswereagreedonbytheSUMATRA researchersontheirfinalmeetingon27September2023inArnsberg, after28monthsofresearchandintensivecollaboration.
01 Lightmanagementsystemsoffergreat energysavingpotentials,andtheadditional costsarelowcomparedtoanon-managed system.Theyshouldbeemployedaccording tothenecessitiesoftheapplication.
02 LifeCycleAssessmentsofLEDluminaires shouldfocusnotonlyonenergyefficiency, butalsoonresourceefficiency.
03 Theluminaireshouldbedesignedto enablereplacementandupgradesof electroniccomponentssuchasLED modulesandelectroniccontrolgears(ECGs).
04 Sparepartsforluminairesand componentsshouldbeavailableinthelong term.
05 Allcomponentsshouldbedesignedto identicallifetimes,whichshouldmeetthe lifetimerequirementoftheapplication.
06 Informationthatmakesiteasiertoreplace componentsshouldbefoundonthe luminairelabel,electronicallyintheluminaire, orviabuildinginformationmodels(BIM).
07 Luminairesshouldbedesignedtobe separatedintouniformmaterialfractionsin therecyclingprocess,inordertominimize materiallosses.Atthesametime,recycling processesshouldbeoptimized.This requirescoordinatedactivitiesbetween manufacturersandrecyclers.
necessarytomakerealprogressinthis veryrelevantfield.
Inthisarticle,wepresentedthreefacets ofsustainabilityofluminairesindetail:The globalwarmingpotential,theabioticdepletionpotential,andtherecyclability.By usingquantitativemethodstoassessthese threeaspects,differentluminairedesigns becomecomparable.However,wedid notfindasatisfactorysolutionforan“overallsustainabilityrating”.Thischallengeis illustratedinthefollowingexample:Imaginetwoluminaireconcepts,AandB,for thesamelightingpurpose.Amayhavean 8%lowerglobalwarmingpotentialthanB, becauseitreachesahigherluminousefficacybyemployingmoreLEDsandabetter heatsink.ThisleadstoBhavinga17% lowerabioticdepletionpotentialthanA. Furthermore,AsurpassesBby5percentagepointsinrecyclability.Whichconcept, AorB,deservestobecalled“moresustainable”?Wedonotevendaretoraisethe questionwhichluminairewouldbejustifiedtobeclaimed“sustainable”inabsolute terms.
Thoughhavingmadeprogressinquantifying,explainingandinterpretingtheenvironmentalimpacts,westillhavetoconclude thatsustainabilityisnotmeasurable.In viewofthislackofcertainty,weencourage furtherresearchandexpandedeffortsto movethelightingindustrytowardsamore sustainablefuture,asexpressedinour9 recommendations. ■
08 LifeCycleAssessmentdata-setsfor luminairecomponents,especiallyLED modulesandECGs,shouldbecompleted, standardizedandcommunicated transparently.
09 Manufacturersarerecommendedto performLifeCycleAssessmentsduring productdevelopmenttoachievea meaningfuleco-designoftheirluminaires.
AuthorSebastianKnoche studiedphysics andobtainedadoctoraldegreeinthefield oftheoreticalsoftmatterphysicsfromTU Dortmunduniversity.In2015,hechanged fromacademiatoindustryandstarted workingfortheTRILUXGroup.Since 2017,heisinleadofthelightingresearch teamandorganisestheparticipationof TRILUXinjointresearchprojects.Hiscurrentresearchprojectsarefocussedon sustainability.
AuthorMarinaProske studiedenvironmentalengineeringattheTechnicalUniversityofBerlinandcompletedherdoctorate onthesubjectof“Ecodesignconcepts andenvironmentalassessmentstaking intoaccountproductobsolescence”.She hasbeenworkingatFraunhoferIZMsince 2011,wheresheisleadingthe“LifeCycle Modeling”groupsince2023anddealswith thetopicsofecodesignandlifecycleassessments.From2016to2022shewasa memberoftheresearchgroup“OHA–ObsolescenceasaChallengeforSustainability”.SheworksinnationalandEuropean researchprojectsontheenvironmental impactofelectronics,conductslifecycle assessmentsofICTdevicesandregularly reviewsLCAs.
[1] WorldCommissiononEnvironmentandDevelopment,“OurCommonFuture,”OxfordUniversity Press,Oxford,1987.
[2] J.Rockström,W.Steffen,K.J.Noone,Å.Persson, F.S.Chapin,E.F.Lambin,T.M.Lenton,M.Scheffer, C.Folke,H.J.Schellnhuber,B.Nykvist,C.A.d.Wit, T.P.Hughes,S.v.d.Leeuw,H.Rodhe,S.Sörlin,P. K.Snyder,R.Costanza,U.Svedin,M.Falkenmark, L.Karlberg,R.W.Corell,V.J.Fabry,J.Hansen,B. Walker,D.Liverman,K.Richardson,P.J.Crutzenand J.A.Foley,“Asafeoperatingspaceforhumanity,” Nature,vol.461,no.7263,pp.472-475,2009.
[3] W.Steffen,K.Richardson,J.Rockström,S.Cornell, I.Fetzer,E.Bennet,R.Biggs,S.Carpenter,W.de Vries,C.deWit,C.Folke,D.Gerten,J.Heinke,G. Mace,L.Persson,V.Ramanathan,B.Reyersand SörlinSverker,“Planetaryboundaries:Guidinghuman developmentonachangingplanet,”Science,vol. 347,no.6223,2015.
[4] K.Richardsonandetal.,“Earthbeyondsixofnine planetaryboundaries,”ScienceAdvances,vol.9,no. 37,2023.
[5] IPCC,“ClimateChange2023:SynthesisReport. ContributionofWorkingGroupsI,IIandIIItotheSixth AssessmentReport,”Genf,2023.
[6] M.B.Osman,J.E.Tierney,J.Zhu,R.Tardif,G.J. Hakim,J.KingandC.J.Poulsen,“Globallyresolved surfacetemperaturessincetheLastGlacialMaximum,”Nature,no.599,pp.239-244,2021.
[7] IPCC,“GlobalWarmingof1.5°C.AnIPCCSpecial Reportontheimpactsofglobalwarmingof1.5°C abovepreindustriallevelsandrelatedglobalgreenhousegasemissionpathways,”CambridgeUniversity Press,Cambridge,2018.
[8] IPCC,“ClimateChange2021:ThePhysicalScience Basis.ContributionofWorkingGroupItotheSixth AssessmentReportoftheIntergovernmentalPanel onClimateChange,”CambridgeUniversityPress, Cambridge,2021.
[9] L.VanOers,A.deKoning,J.GuinéeandG.Huppes,“AbioticresourcedepletioninLCA,”Roadand HydraulicEngineeringInstituteoftheDutchMinistry ofTransport,PublicWorksandWaterManagement, 2002.
[10] L.VanOersandJ.Guinée,“TheAbioticDepletion Potential:Background,Updates,andFuture,”Resources,vol.5,no.1,p.16,2016.
[11] L.VanOers,J.GuinéeandR.Heijungs,“Abiotic resourcedepletionpotentials(ADPs)forelements revisited—updatingultimatereserveestimatesand introducingtimeseriesforproductiondata,”The InternationalJournalofLifeCycleAssessment,no. 25,pp.294-308,2020.
[12] JointResearchCentre(JRC)oftheEuropean Commission,“EnvironmentalFootprintreference package3.1,”Brüssel,2022.
[13] P.IchaandT.Lauf,“Entwicklungderspezifischen Treibhausgas-EmissionendesdeutschenStrommixin denJahren1990–2022,”Umweltbundesamt,2023.
[14] Prognos,Öko-Institut,Wuppertal-Institut,“KlimaneutralesDeutschland.StudieimAuftragvonAgora Energiewende,AgoraVerkehrswendeundStiftung Klimaneutralität,”2020.
[15] LightingEurope,“EvaluatingperformanceofLED basedluminaires,”Brussels,2018.
[16] J.-C.Reinhold,“Adatabasecomparisonbetween GaBiandEcoinventv3.8–Comparinginventory modelsandresultsbasedonthelifecycleassessmentofthemodularsmartphoneFairphone4,” Master’sThesis,TUBerlin,2023.
[17] E.Pauer,B.WohnerandM.Tacker,“TheInfluence ofDatabaseSelectiononEnvironmentalImpact Results.LifeCycleAssessmentofPackagingUsing GaBi,Ecoinvent3.6,andtheEnvironmentalFootprint Database,”Sustainability,vol.12,no.23,p.9948, 2020.
[18] EN45555:2019–Generalmethodsforassessing therecyclabilityandrecoverabilityofenergy-related products.
[19] R.Pomberger,“ÜbertheoretischeundrealeRecyclingfähigkeit,”ÖsterreichischeWasser-undAbfallwirtschaft,no.73,pp.24-35,2021.
[20] “DINENISO14021:2021-10Umweltkennzeichnungenund-deklarationen–Umweltbezogene
Anbietererklärungen(UmweltkennzeichnungTypII),” Beuth,Berlin,2021.
[21] K.Schischke,A.Berwald,G.Dimitrova,J.Rückschloss, N.F.NissenandM.Schneider-Ramelow,“Durability, reparabilityandrecyclability:ApplyingmaterialefficiencystandardsEN4555xtomobilephonesand tabletcomputers,”ProcediaCIRP,no.105,pp.619624,2022.
[22] Directive2012/19/EUoftheEuropeanParliament andoftheCouncilof4July2012onwasteelectrical andelectronicequipment(WEEE).
[23] IEC,“TR62635:2012Guidelinesforend-of-life informationprovidedbymanufacturersandrecyclers andforrecyclabilityratecalculationofelectricaland electronicequipment,”VDE-Verlag,Berlin,2012.
[24] P.Chancerel,M.Marwede,F.MathieuxandL. TalensPeiro,“Feasibilitystudyforsetting-upreference valuestosupportthecalculationofrecyclability/ recoverabilityratesofelectr(on)icproducts.EUR 27922,”PublicationsOfficeoftheEuropeanUnion, Luxembourg,2016.
[25] AGEBAGEnergiebilanzene.V.,“AnwendungsbilanzenzurEnergiebilanzDeutschland,”2023.
[26] UBAUmweltbundesamt,“EnergiebedingteEmissionenvonKlimagasenundLuftschadstoffen,”1901 2024.[Online].Available: https://www.umweltbundes amt.de/daten/energie/energiebedingte-emissionen# entwicklung-der-energiebedingten-treibhausgas-emi ssionen
AboutTrilux: TRILUXisoneofthe majorinternationalsuppliersofprofessional lightformanyapplications-fromoffice toindustry,fromretailtooutdoor.Ever sincethecompanywasfoundedin1912, TRILUXluminaireshavebeensettingnew standards,forexamplewithtopvaluesin energyefficiency,lightqualityanduserfriendliness.Themedium-sizedfamily businesshasatotalof30subsidiariesand exportsitslightingsolutionsto50countries worldwide.Thecompany’scorevalues includequality,innovation,and sustainability.
www.trilux.com
AboutFraunhoferIZM: Since1993
FraunhoferIZMhasbeenoneoftheworld’s leadinginstitutesforappliedresearchand thedevelopmentandsystemintegration ofrobustandreliableelectronics.Forover 30years,morethan450employeeshave beenfindingtechnologicalsolutionsincooperationwithpartnersfromindustryand academia.Emergingchallengesareaddressedinbranchessuchasautomotive andindustrialelectronics,medicalengineering,ICTandsemiconductor technology.
www.izm.fraunhofer.de
Lightnotonlyilluminatesaroom,but alsobooststhemoodofthoseinit. Itisthereforecrucialthatinternal spacesareoptimallylit.Thisapplies notonlytodomesticlivingroomsbut alsototraincompartments.That’swhy SeisenbacherGmbH,amanufacturer ofrailvehicleinteriors,isparticipatinginauniqueproject:theEU-funded H2020researchprojectPHABULOµS, aprojectaimingtorevolutionizethe developmentoffree-formmicro-optics inEurope,providingnewopportunities forlightingtechniques.
Free-formmicro-optics(FMOs)areextremelysmallandcomplexopticalelementsthatenableprecisecontroloverlight distributionandintensity.Theseopticsare designedwithnon-symmetricsurfaces,allowingforgreaterflexibilityinshapingthe lightoutput.Inthecontextoflightingfor mobilityinteriors,free-formmicro-optics playacrucialroleincreatinginnovative lightingdesigns,enhancingpassenger comfort,andimprovingsafety.
CloseupfromaGSLLMasterbyJoanneum Research.
FMOsofferseveraladvantagesovertraditionalopticstechnologies.Firstly,FMOs offerenhanceddesignflexibilityastheyenableprecisecontroloverlightdistribution, allowingforthecreationofuniquelighting designsandcustomizedlightingeffects tailoredtospecificrequirementsanddesign aesthetics.
Secondly,FMOsoptimizelightextraction andcontrol,resultinginhigherefficiency andreducedenergyconsumption.Thirdly, theirsmallformfactormakesthemideal forintegrationintocompactmobilityinterior designs,enablingseamlessandunobtrusivelightingsolutions.
ThemanufacturingprocessforFMOs differsfromtraditionalopticsproduction methodsinseveralways.Whiletraditional opticstypicallyinvolvegrindingandpolishingflatorsymmetricsurfaces,FMOs requireadvancedfabricationtechniques suchaslithography,additivemanufacturing,orprecisionmolding.
ThemanufacturingprocessforFMOsinvolvesthreestages.Theprocessstarts withthedesignphasewhereopticalsimulationsandmodellingtoolsareemployed tooptimizetheshape,dimensions,and surfacecharacteristicstoachievespecific lightingobjectives.
Simulationandmodellingplayacrucialrole inthedesignandoptimizationofFMOs. Byleveragingadvancedsoftwaretools, engineerscansimulateandanalyzethebehavioroflightwithintheoptics,allowingfor theoptimizationofshape,surfacecharacteristics,andopticalproperties.
Specifically,bysimulatingdifferentdesign iterations,engineerscan
• evaluateandcomparetheperformance ofvariousFMOconfigurations,enabling informeddesigndecisions;
• analyzehowlightpropagatesandinteractswiththeoptics,enablingtheoptimizationoflightdistribution,minimizing losses,andachievingthedesiredlighting effects;
• identifydesignimprovementsthatenhanceefficiency,maximizelightextractionandminimizeunwantedlightscatteringorreflection;and
• predictandvalidatelightingcharacteristics,suchasintensity,colortemperature,andbeamangles.
https://phabulous.eu/
Finally,theprecisecontroloverlightdistributionprovidedbyFMOsimprovessafety byfacilitatingeasynavigationandemergencyexitidentification,andtheabilityto adjustbrightnessandcolortemperature enhancespassengercomfort.
Thesecondstageisfabrication:depending onthechosenmanufacturingtechnique, thefabricationprocessmayinvolveprecisionmachining,etching,or3Dprinting. Thefabricationmethodsusedaretypically capableofproducingintricateandnon-
symmetricsurfacegeometriesrequiredfor free-formmicro-optics.
Thethirdstageistesting:toensurethe qualityandperformanceofthefabricated optics,precisemetrologytoolsareused tomeasureandverifytheshape,surface roughness,andopticalpropertiesofthe micro-optics.
StampsusedforS+RUp-scalingbyJoanneum Research.
Suchsmarttransportationinteriorlighting, combinedwithmicro-optics,canbeutilizedinvariousmodesoftransportation suchasairplanes,trains,buses,andother vehicles.Thisisasignificantgainforthe entireindustry,which,thankstoadvanced LEDtechnology,isalsoenergy-efficient andenvironmentallyfriendly.However,integratingFMOsintoexistingtechnologystill posesseveralchallenges.
Firstly,becauseFMOsinvolveintricatedesignsandprecisefabricationrequirements, theirintegrationintoexistingtechnologyis frequentlycomplexandchallenging.Secondly,themassproductionofFMOswith consistentqualitycanbechallengingdue tothecomplexityoffabricationtechniques andtheneedforspecializedequipment. Finally,thefabricationandintegrationof FMOsusuallyinvolvehighercostscomparedtotraditionalopticstechnologies, especiallyintheinitialstagesofadoption.
Toovercomethesechallenges,collaborationbetweenindustrypartners,research organizations,andtechnologyproviders becomescrucial.Tothisend,in2020,the EUfundedthePHABULOµSproject,that wassetupwiththeaimofdevelopingrobustmanufacturingtechnologiesviaapilot linethatcandeliverhigh-qualityfree-form micro-opticsatscaleandatlowercosts andstreamlinetheintegrationofFMOsinto existingtechnology.
Asamanufacturerofrailvehicleinteriors, SEISENBACHERhasbeenabletobringits considerableexpertiseinlightingsolutions formobilityinteriorstothePHABULOµS project.Theproject’semphasisonestablishingapilotlinefortheentireproduction cycle,fromdesigntothefinishedapplication,hasallowedustocontributeour expertiseandshapethedevelopmentof lightingsolutionsformobilityinteriors.By leveragingtheadvancementsinfree-form micro-optics,ouraimistocreatenewlightingdesignsandenhancethelightingexperienceforpassengers.
Ourexperienceofparticipatinginthe PHABULOµSPilotLineprojecthasbeen highlyvaluableandenriching-particularly thecollaborationwithrenownedresearch organizationsandindustrialpartnerswhich hasprovideduniqueinsightsandopportunitiesforinnovation.
Thefutureoffree-formmicro-opticsholds significantpotentialforadvancementsand innovationsasFMOsaretheonlytechnologycapableofsatisfyingthegrowing demandforcompactandefficientlighting solutions.
Keypotentialadvancementsincludeincreasedminiaturizationenablingtheirintegrationintoincreasinglycompactandslim designsacrossvariousmobilityinteriors, aswellasadvancedfunctionality,suchas
sensorsforoccupancydetectionandadvancedgesturecontrol.Ongoingresearch anddevelopmenteffortswillalsofocuson optimizingtheopticalefficiencyofFMOs, resultinginimprovedlightextraction,reducedenergyconsumption,andlonger lifetimes.
Furthermore,FMOswillincreasinglybe integratedintosmartsystems,allowing forseamlessintegrationwithothertechnologies,suchasInternetofThings(IoT) connectivity,toenableintelligentandadaptivelightingexperiences.Similarly,greater designflexibilitywillenablelightingsolutionsthatarenotonlyfunctionalbutalso aestheticallypleasing,enhancingtheoverallinteriordesignofmobilityspaces.
Finally,theongoingcollaborativeefforts betweenindustryandresearchorganizations,asexemplifiedbyinitiativeslike thePHABULOµSproject,willcontinue todrivetheadvancementsinfree-form micro-opticsandpavethewayfortheir widespreadadoptionintheindustry. ■
HeadofSales,Seisenbacher
ChristianFORSTNERisHeadofSalesat SeisenbacherGmbH,withextensiveexperienceintherollingstockindustry.Having obtainedadegreeinElectricalEngineering, heembarkedonasuccessfulcareerthat spansover20yearsinthisspecializedsector.Christian’sexpertiseliesintheareasof design,engineering,andprojectmanagementforrailvehicles.Hehasbeeninvolved inthedevelopmentandimplementationof innovativesolutions,ensuringthehighest qualityandsafetystandardsaremet,and heremainsanactiveparticipantinindustry conferencesandworkshops.
www.seisenbacher.com
Lightplanningistheartandscience ofstrategicallydesigninglightingsystemstoenhancethefunctionality,aesthetics,andambianceofindoorand outdoorspaces.Whetheritisaresidentialhome,acommercialbuilding, orapublicspace,effectivelightplanningplaysacrucialroleincreating environmentsthatarebothvisually pleasingandfunctional.Atitscore, lightplanninginvolvesunderstanding thepropertiesoflight,suchasintensity,color,direction,anddistribution, andapplyingthisknowledgeincombinationwithcomputer-basedsimulationandanalysistoolstoachieve specificobjectives,includingvisibility andsafety,taskperformance,ambienceandmood,andcost-andenergy efficiency.
Inthisarticle,wefocusonlightplanninginsidebuildingsandhowefficient anduser-friendly3DScan-to-BIMsolutionsbasedonsmartphonetechnology cansimplifyandevenrevolutionize thelightplanningprocess.Wediscuss thevalueof3Ddata,buildinginformationmodelling,standardization,AI, andsmartbuildingtechnologywithrespecttocurrentandfuturepotential forthisfield.Asapracticalexample dedicatedtothelightplanningindustry,weprovideanoverviewofMetaroombyAmrax®,asmartphone-based 3DScan-to-BIMsolution.
Tosimulateandanalyzetheeffectoflight, animportantcriterionontopofthewellstandardizedpropertiesofthelightsources, istoobtainknowledgeoftherealworld, i.e.,thebuildingforwhichthelightsimulationneedstobeperformed.Forlight planning,itisessentialtounderstandboth thelightsourcesandtheilluminatedscene. Certainly,thereexistsimplifiedsolutions basedon2Dfloorplans,orevenmore simplifiedinformationabouttheinteriorof buildings,e.g.,basedontherooms’area only.Foroptimumresults,however,3D modelsofbuildingsareanessentialprerequisite.Beyondgeometry,particularly windowsandmaterials(colors)areimportantpropertiesstronglyinfluencingthelight simulation’soutput(Figure 1).
Forexample,thespatial(3D)positionand geometryofawall,incombinationwith thereflectancepropertiesofthewall’ssurfacematerial,influencehowtheemitting lightisreflectedinsidetheroom.Theexactverticalpositionofawindow(which ispotentiallymissingeveninanaccurate 2D-floorplan)stronglyinfluenceshowthe daylightenterstheroom.Anyobstacles ontopofthebasicroomgeometry,which blockandreflectthelight,areoftennot modeledinsimplified(e.g.,2D)models. Basedontheseexamplesandsincethe worldisthree-dimensional,itisobvious thatlightplanningneedstobeperformed inthreedimensionstoachieveoptimum accuracy.
partofalargerprojectperformedinparallel orsequencewithothertrades.Onlyinteroperabilityfacilitatesthehighestefficiency andcircumventstheredundantgeneration, processing,andstorageofasynchronous data.
1 MetaroombyAmrax UrsteinSüd19/1/5,5412PuchbeiHallein, Austria. martin.huber@amrax.ai
Fromatechnicalperspective,a3Dmodel thatincludesalltheserelevantproperties needstobeprovidedinanywaythatthe lightplanningtoolcanreadandinterpret thedata(Figure 2).Theoretically,thisdata isallyouneedandtherearenorequirementsforaspecificinterface.However, well-definedstandardsareessentialtoenableseamlessinteractionbetweendifferent toolsandstakeholders.Thisisparticularly thecasesincelightplanningisoftenone
BuildingInformationModeling(BIM)involvescreatingandmanagingdigitalrepresentationsofbuildings’physicaland functionalcharacteristics.ABIMmodel isadigitalrepresentationofabuildingthat includesgeometricshapesandinformationabouttheproject’scomponents,such asmaterials,spatialrelationships,quantities,andpropertiesofbuildingassets.The modelsprovidetheall-encompassingbasis ofinformationonwhichindividualstakeholdersextracttheinformationrelevantto them.Thisinformationisstoredinastructuredway,allowingeachstakeholderto accessanduseitthroughoutthelifecycle ofaproject,frominitialplanninganddesign throughconstruction,operation,andmaintenance.Inthebeginning,duetomissing standards,BIMsoftwaredevelopersmainly createdproprietarydatastructuresintheir software.Therefore,dataandfilescreatedbyonevendor’sapplicationsmaynot workinothervendorsolutions,which,in turn,stronglylimitstheusabilityofsoftwaresolutions.Openstandardsforsharing BIMdataamongdifferentsoftwareapplicationshavebeendevelopedtoachieve interoperabilitybetweenapplications.BIM’s evolutiontracesbacktothe1970s,butit wasnotuntiltheearly2000sthatitgained worldwiderecognition.Progressinopen BIMstandardshasvariedacrossnations. In2013,theIndustryFoundationClasses (IFCs) [4],craftedbybuildingSMART [5], attainedinternationalstandardstatusas ISO16739forthefirsttime.Thespecified fileformatisalsoknownasIFC4.Furthermore,theevolutionofIFCtoversion4.3 (2021)representsanothersignificantmile-
stoneintheongoingdevelopmentofBIM technologyandstandards.RecentdevelopmentsindicatethatIFC4.3isbecoming increasinglywidespreadandimportantin thearchitecture,engineering,andconstruction(AEC)industry.Forthenearfuture,ourexpectationisahigheradoption rateofBIMandIFCinthelightingdesign industry.
Withthevisionofenablingseamlessinteroperability,BuildingSMART [5] isan internationalorganizationthataimstoimprovetheexchangeofinformationbetween softwareapplicationsusedintheAECindustry.BeyondIFC,whichisthestandard forBIMdatamodels,BuildingSMARThas developedseveralotherstandards.For example,BuildingSMARThasdeveloped BIMCollaborationFormat(BCF),another standardforexchangingcommentsand issueingtrackinginformationbetweendifferentsoftwareapplicationsutilizedinBIM workflows.
Nowadays,standardizedBIMmodelsare typicallyavailablefornewbuildings.However,lightplanningoftenneedstobeperformedinexistingconstructionsdueto highenergyprices,outdatedequipment, technologicalprogress,andnewregulatory requirements.Formostofthesebuildings, up-to-dateopenBIMmodelsareunavailable.ThisispartlybecauseBIMmodels werenotcreated.However,itcanalsobe thecasethataBIMmodelisavailable,but duetoveryrecentestablishmentsinstandardizations,interoperabilityisoftennot given.
“85%ofEUbuildingswere builtbefore2000.” [1]
Forthatreason,thecreationofBIMmodelsfromexistingbuildingsiscurrentlyof highrelevanceinmanyfieldsrelatedto AEC.Thisprocess,however,istypically laboriousandexpensive.Oneapproach todigitizingbuildingsisbasedonmanual measurementfollowedbythemanualcreationofBIMmodelsbasedondedicated CAD/software [1].Despitepowerfuland elaboratesoftwaretools,thisapproachis highlytime-consuminganderrorprone. Particularlyinthecaseofspecialgeometriesandinaccuratelybuiltconstructions
(e.g.,non-planarwallsandinaccurateangles),manualmeasurementcanbehighly challenging,evenforexperts.Anotherapproachreliesondedicatedhardwareincludinghigh-endsensortechnology,such aslasersensors [2].Thishardwareallows thecaptureofrooms,floors,andbuildings byaccuratelyscanningtheinteriorwith depthsensorsincombinationwithcameras.Typicallydedicatedstationaryhardwareisplacedatseveraldistinctpositions insideabuildingtoaccuratelycapturelocal pointcloudsateachposition.Finally,these acquiredlocalpointcloudsaremergedto generateasingleglobalpointcloudrepresentingawholebuildingorapartofa building.Therearealsoportablehardware solutions,whichfacilitateacquisitionwhile
walkingthroughabuilding.Thestrength ofthishigh-endhardwaretechnologyisits extraordinarilyhighvisualqualityandhighly resolvedpointcloudthatcanbeautomaticallyreconstructedbasedonthescan. However,expertsanddedicateddevices mustbepresenton-siteforscanning.Anotherdisadvantageisthefactthatoften, alargepointcloudisnotneededandis evenunwelcomeinworkflows.Formodelingbuildings,aslim&efficientparametric representationbasedonsimplebasicelements(e.g.,planarwalls,planarfloors, planarceilings)isnotjustsmallerandeasiertohandle,butalsomoreappropriatefor computationsandforinteractingwiththe model.Forthatreason,pointcloudsare oftenmanuallyconvertedintoasimplified
parametricBIMmodel.Despiteautomated pointcloudacquisition,thedataacquisitionandpreparationprocessisstilllaborintensiveandtherebyexpensive.Scanning, aswellasdatapost-processing,requires experts.Thescanningprocessevenrequiresexpertsonsite.Thecostsforscanningandreconstructionrangefromabout EUR1.00(forexceptionallylargesites)to EUR5.00persquaremeter.
Smartphonesnowadayscontainpowerfulcamerasandhardwareforefficiently processingcomputervisionandAIalgorithms.Moderndevicesarealsopartly equippedwithlightdetectionandranging (LiDAR)sensortechnology.Thisallowsthe captureofdepthinformationontopofan RGBcamerasignal,inturnenablingthe acquisitionof3D(pointcloud)datawith smallandportableconsumerdevices.The built-insensorsshowhigherdeviations andaclearlylowerspatialresolutionthan dedicatedexperthardware.Thiscanbe alimitationifthefinestructureshouldbe accuratelyreconstructed.Thegeometry ofbuildings,however,istypicallystrongly constrainedwithplanarwalls,floors,and ceilingscombinedwith(rectangular)cornersandedges.Thisfact,alongwithmodernAIandcomputervisionalgorithms, enablessmartphonestoreconstructtheinteriorofbuildingsaccuratelydespitebeing lessaccurateandhavingordersofmagnitudecheapersensortechnology.
Thistechnologyeliminatesallbarriers, clearlyreducesscanningcosts,andenablesScan-2-BIMforanybody.Assoonas interoperability(e.g.,basedonIFC)isensured,anybodycanperformascan,data canbeprocessedonthephoneorina cloud,andfinally,aBIMmodelcanbeexportedandimportedtobeusedindiverse workflows.
MetaroombyAmrax® representsapioneeringScan-2-BIMsolutionbasedon smartphoneLiDARtechnology.Withthe Metaroomapp(Figure 3),auserscansa roomwhilewalkingwithamobilephoneor tabletintheirhandsthrougharoom.The capturedsignalisenhancedbasedonrealtimecomputervisionandAItechnology, andseveraldeepneuralnetworkalgorithmsareusedtocapturethegeometry, doors,windows,3Dobjects,andmaterialproperties.Insteadof(highlyresolved)
pointclouds,thistechnologyallowsthedirectcreationofslimparametricBIMmodels consistingofafewbasicelementswithoutanyneedformanualpost-processing (Figure 2).Sincethedeeplearningmodelsdirectlyrunonthesmartphone,instant feedbackisprovidedtotheuserinthe formofa3Dpreview.
Metaroomallowsadditionalfunctionality ontopofpurescanningandAI-based3D reconstruction.Afterfinishingthescan,the usercanviewandmodifythegenerated sceneonadesktoporlaptopPCusing MetaroomStudio.Theusercanextract andmodifyroommeasurestoensurethat the3Dmodelperfectlycorrespondstothe realroom.Additionalobjectsofinterest canbemanuallyorsemi-automaticallyannotatedinselected2Dframeswiththe
helpofcutting-edgeAIalgorithms [6] (Figure 4).Finally,alldatacanbevisualizedin3Dand2D,andvariousdataformats(suchasIFC)canbeexported.This allowseasyintegrationinlightplanning workflowswithdiverseplanningsoftware likeReluxandDIALux.
“Thispartnershiphasthepotentialto revolutionizethewayexternalfield staffinteractwiththeircustomers. ThepartnershipbetweenAmraxand Reluxisanimportantstepinthedevelopmentofdesignandconstruction technologies.”
–MarkusHEGI,CEOofReluxInformatik AG
“InSwitzerland,therenovationand modernizationofluminairesisavery importanttopic.Metaroomsupports oursalesforcebycreatingthebasis forplanningintheshortestpossible time.Forluminairemanufacturers, lightplanningisanimportantelement forclientacquisition.Metaroomhelps ustoreducecosts,gainspeed,and tobeabletoplanourprojectsmore precisely.”
–IvoHuber,CEOofTuluxAG(Interview Light&Building)
“Weprovidestate-of-the-artAItools allowingthecustomerstodetectand model3Dlightsourcesbasedona singlemouseclickonanobjectina2D frame.”
–LucaDEBIASI,ChiefProductOfficer, MetaroombyAmrax®
Sinceanypersoncanperformthescan withoutanyexpertise(Figure 5),thecosts fordigitizationareapproximately90% lowerwithsmartphoneScan-2-BIMsolutionscomparedtocompetingsolutions withdedicatedhardware.Ontopofthat, theflexibilityisclearlyhighersincescans canbeperformedatanytimewithout longleadtimes.Slightinaccuraciesofthis pipelineinthefinal3Dmodelcreated,do notconsiderablyinfluencetheaccuracy ofthelightplanningprocess.Instead,we obtainanoptimumtrade-offbetweenaccuracy,costs,andflexibilitytoimprovethe lightplanningworkflowwiththissolution.
Today,smartphonetechnologyhasalready disruptedthemarketfor3Dscanningof buildingsduetothelowcostscombined withthehighsimplicityandflexibility.Due tocontinuousdevelopmentandcontinuouslyenhancedsmartphonetechnology, thisnovelapproachcanevenrevolutionize thefutureoflightplanning.AI,incombinationwithmodernimagingsensors,hasthe potentialtosemanticallycaptureallbuilding detailsthatarerelevantforlightplanning inafullyautomatedway.Forexample, thereflectancepropertiesofanymaterial couldbeestimatedandassignedtothe 3Dmodeltoobtainevenmoreaccurate modelsforevenmoreaccuratesimulations andplanning.ImprovedLiDARtechnology orenhancedAItrainingcanincrementally enhancethegeometricaccuracytocome
closetosolutionsbasedondedicated hardwarewhilekeepingthecostadvantage.
“Deeplearningtechnologyisenormouslypowerfulbuttypicallyinflexible sinceitrequireslarge,labeleddata setsfortrainingmodelscontaininga fixedsetofcategories.Wearecurrentlyestablishingamethodbasedon adeeplargevisionmodeldeveloped byMetaAIin2023.Thiswillallowusto semanticallycaptureanydetailsofany objectcategorybasedononesingle exampleimageoftheobjectsoon.”
–ChristophHOFER,ChiefSolutionsArchitect,MetaroombyAmrax®
Incombinationwithstate-of-the-artvirtualrealityheadsets,thehighlyrealistic 3Dmodel(Figure 6)canevenbeused toprovidethecustomerwitharealistic andcost-efficientpreviewoflight-planned andfurnishedroomsorevenofentirely equippedbuildings.Scan-to-BIMsolutions enablethecaptureandmodelofexisting furniture.Ontopofthat,basedoninteractiveorautomatedAItools,buildingmodels canbe(re)furnished(semi)automatically. Theoretically,lightplanningcouldalsobe apartofa(semi)automatedinteriorplanningpipelinewithrealisticlightsimulation incombinationwithAImodelsgenerating recommendations.
Scanningwithasmartphoneiseasyandcanbeperformedwithoutanyexpertise.
3DRenderingofanindustrialbuildingbasedonascanperformedwithMetaroom.Visualizationis alsopossiblewithVRtechnology.
Figure5:Smartlightingsystemsofferenhanced energyefficiencythroughfeatureslikeoccupancysensing,daylightharvesting,and adaptivelightingcontrol,reducingelectricityconsumptionandoperationalcosts. Theyfurtherprovideflexibilityandcustomizationoptions,allowinguserstoadjustlightinglevels,colors,andschedules accordingtopreferences,occupancypatterns,andenvironmentalconditionsfor improvedcomfortandproductivity.
Lightplanningcanbemuchmorethana staticsimulationinsuchsmartsettings. Planningcanincorporatethefullpotential ofsmartbuildingfeaturesduringtheoptimizationoftheinfrastructure.However, BIMmodelsandconventionallightplanningdonotincorporatethetimedimension anddynamicalchanges.Toreachthenext level,modelingbasedondigitaltwinswill beneeded.
Basedondigitalscansofbuildingsincombinationwithsmarthometechnology,in thefuture,3DBIMmodelscanbetranslatedinto“alive”digitaltwins.Adigitaltwin representsadynamicmodelofarealentitywithabidirectionalconnectiontothe real-worldcounterpartallowingreal-time synchronizationbetweenthetwins.The digitaltwincanusesmart-homecontrol andIoTsensors,suchaslightsensorsto capturethestateoftherealentityandperformsynchronization.
Basedonsimulationsandcomputations usingthedigitaltwin,foreachsituation (i.e.,eachpointintime)anoptimumsettingcanbecalculatedandassignedto therealentity(building).Thisenablesus tocombinelightplanningwithreal-time smartcontrolofbuildingstooptimizethe lightsituationdependingondynamicparameters.Incorporatingthefourth(time) dimension,lightplanningcanreachthe nextlevel,settingnovelstandardsforcomfortandenergyefficiency. ■
ViewtheNewMetaroom® Video
https://bit.ly/metaroom-video
Amrax® isaleadingtechnologyplatform specializinginthedigitizationanddesign ofspacesusing3Dtechnology.Founded in2020,thecompanyoffersfast,inspiring, anduser-friendlysolutionsforspaceplanning,interiordesign,lightingdesign,radio planning,andfacilitymanagementthrough itsinnovativeMetaroom® app.Amrax’s teamof25expertsincomputervision,AI, softwaredevelopment,andmarketinguse interdisciplinarycollaborationandvirtual realitytocreategroundbreakinginnovations.HeadquarteredinSalzburg,Austria, Amrax® alsooperatesinViennaandthe USA.
Inaneraofnumerouschallenges,wehave foundcomputersandtechnologytobe empoweringtools,magnifyingourhumanabilitiesandsharingthemwiththe world.AtAmrax®,werecognizethepotentialofthesetoolsandstrivetopushtheir boundarieswithourinnovativeproduct, Metaroom®.Metaroomgoesbeyondthe conventionallimitations,expandingour abilitiesandopeningnewdoorsofpossibilities.Weoffertheabilitynotjusttovisualize buttoreimaginethesespaceswithindividual3Dvisualsupport.Itisatoolthat cultivatescreativity,allowingeveryoneto shapetheirenvironmentaccordingtotheir preferencesandneeds.Moreover,our technologyupholdsourcollectiveresponsibilitytowardstheplanetbypromoting energy-savingsolutionsanddrivingefforts towardsdecarbonizationinbuildingdesign. WhatsetsAmrax® apartisourteamof someofthemostdedicatedandbrilliantAI minds,globally.Theyarethedrivingforce behindthedevelopmentofthistransformativesuperpower,makingitaccessibleto everyone.Joinusinembracingthefuture ofspaceswithMetaroom.
–MartinHUBER,Co-FounderandCEOof Amrax®
Enjoya 30-DayFreeTrial on https://studio.amrax.ai/#pricing Thenusepromocode LED20 atcheckout toreceivea20%discountonyourannual subscriptionforthefirst12months.This offerexpireson31July2024.
MartinHUBER,CEOofMetaroomby Amrax®
MartinHuberisaseasonedleaderinthe techanddeeptechsectorswithasolid productdevelopmentandAItrackrecord. AsCEOandCo-founderofAmrax,he’sat theforefrontof3Dmodelinginnovation. BeforehisroleatAmrax,Martinwasthe CEOandCo-founderoftheDentalManufacturingUnitGmbH(DMU),andfrom September2007toApril2014,heserved asCTOandCo-founderofCADstar.He playedavitalroleintechnologydevelopmentandmanagementinthisHighTechhealthcarecompany.Hisexpertiseis backedbyadegreeinMechanicalEngineeringandstudiesinComputerSoftware Engineering.Hiscomprehensiveexperienceandeducationalqualificationsmake himavisionaryleaderandanauthorityin theintersectionoftechnologyandbusiness.
[1] Ali,S.B.M.,Mehdipoor,A.,SamsinaJohari,N., Hasanuzzaman,M.,&Rahim,N.A.(2022).Modeling andperformanceanalysisforhigh-risebuildingusing ArchiCAD:initiativestowardsenergy-efficientbuilding. Sustainability,14(15),9780.
[2] Brenner,C.(2003).Buildingreconstructionfrom laserscanningandimages.InProceedingsofthe ITCWorkshoponDataQualityinEarthObservation Techniques.
[3] EuropeanCommission(2024).EnergyPerformance ofBuildingsDirective. https://energy.ec.europa.eu/to pics/energy-efficiency/energy-efficient-buildings/ene rgy-performance-buildings-directive_en
[4] Justo,A.,Soilán,M.,Sánchez-Rodríguez,A.,& Riveiro,B.(2021).Scan-to-BIMfortheinfrastructure domain:GenerationofIFC-compliantmodelsof roadinfrastructureassetsandsemanticsusing3D pointclouddata.AutomationinConstruction,127, 103703.
[5] BuildingSmart. https://www.buildingsmart.org/
[6] Kirillov,A.,Mintun,E.,Ravi,N.,Mao,H.,Rolland,C., Gustafson,L.,...&Girshick,R.(2023).Segmentanything.InProceedingsoftheIEEE/CVFInternational ConferenceonComputerVision(pp.4015-4026).
Formoreinformation,visit https://amrax.ai
Dr.J.NormanBARDSELY,ChiefAnalystatInternational Solid-StateLightingAlliance
Dr.J.NormanBARDSLEY,Founder andSSLAnalyst,BardsleyConsulting Dr.J.NormanBardsley,adistinguished ProfessorofPhysics,hasearnedinternationalacclaimasanexpertinsolidstatelighting(SSL)throughhisadvisory roleswiththeDepartmentofEnergy(DoE) andtheInternationalSSLAlliance(ISA). Renownedforhisextensiveandnuanced understandingofOLEDtechnology,Dr. Bardsleypossessesacomprehensive graspofitsmanufacturingprocesses,cost structures,andongoingresearchendeavors.
jnbard@pacbell.net
Thisthirdarticleonthestatusofthe globalSSLindustrydiscussestherole ofChinainmarketdevelopmentand manufacturingandtheopportunity formarketgrowthinotherdeveloping countriesinAsia.
TheestablishmentoftheLEDmanufacturingbaseinChinawasdrivenbystrong supportfromthenationalandlocalgovernments.SubsidiesfromBeijingenabled thestrongestcompaniestobuildlarge factories,whileregionalandcitygovernmentshelpedtoformtheinfrastructure necessarytoturnthenewtechnologyinto products.Demandwasledbytheneedfor slimbacklightsinflatpaneldisplays(FPD). Transformationofthedisplayindustrywas alsoaidedbysubstantialgovernmentsupport,firstinKoreaandtheninChina.
In2007,China’sMinistryofFinance(MOF) cooperatedwiththeNationalDevelopmentandReformCommission(NDRC)to recommend“InterimMeasuresonAdministrationofFinancialSubsidiesforPromoting High-EfficiencyLightingProducts”.Alarge fractionofthesubsidiesofabout2.5B yuan(US$400M)fromthecentralgovernmentinBeijingbetween2008and2012 wasfocusedonMOCVDfacilitiesforLED chips.Thisfundinghadaglobalimpact, forexampleinhelpingAixtronandVeeco developanewgenerationofequipmentfor epitaxy.ThesubsidiesalsohelpedChinese companiestoshowprofitsevenwhilemakinghugeinvestmentsintheearlystages ofmarketgrowth.Thismadeitpossible forthemtoraisefundsontheequitymarket.Forexample,thestockpriceofSanan Optoelectronicsrosefromavalueof0.18
yuaninSeptember2006to43.56yuanin July2021.Thestockpricehasdropped substantiallysincethen,to12.53yuanat theendofApril2024,butthemarketcapitalizationof62.5Byuan(US$8.6B)remains abovethatofAcuityBrands(US7.6B)and ismorethandoublethatofSignify(3.35B euros).
ThestockpriceofSananOptosoaredbetween 2008and2021.
Thestockmarketimpacthasnotbeen completelypositive.Over-enthusiasmfor capitalinvestmentledtofearsofovercapacityandstockpricedeclines,asseen inthechartforSanan.Manysmallmanufacturersdidnotsurvivethroughdifficult periodsandthetotalnumberofSSLsuppliershasfallenfromover4000toabout 2500.
Themajorityofgovernmentfundingfor thelightingindustryhascomefromlocal sources.Regionalmanufacturinghubs werecreatedinseveralprovinces,such asGuangdong,FujianandZhejiang.In 2012Guangdongprovinceissuedan“LED LightingProductImplementationPlan”. Throughacombinationofsubsidies,purchasingcommitmentsbypublicauthorities, technologicalinnovationandstandardsdevelopment,thegoalswereto
• PopularizeLEDlightinginthewhole society.
• Achieveenergysavingsofmorethan50
• DrivetheLEDindustrytoannualsalesof over500Byuan.
ThisinitiativeenabledGuangdongtocap-
turealmosthalfoftheindustry’srevenues inChinaandperhaps25%ofglobalrevenues.
Theselocalsubsidiesstillpersist.Digitimes Researchreportedthatgrantsinthefirst halfof2020amountedto1.05Byuan. OtherareasinChinastillstrivetocaptureashareofthemarket.InFebruary 2024,ChangzhiCityinShanxiProvince announceda5-yearplanentitled“ImplementationMeasuresofChangzhiCityto EncouragetheHigh-QualityDevelopment oftheLEDIndustry”.
Theirplanincludes:
• Factoryconstructionsubsidiesofupto 35%
• Equipmentpurchasingsubsidiesof1550%
• Promotionandapplicationofhighvalueaddedproducts
• Intelligenttransformationoftheindustrial chainwithgrantsupto3Myuan
• Supportfortalentdevelopmentwith salarygrantsofupto300,000yuanper person.
EncouragedbysuccessinthepenetrationoftheglobalSSLmarket,theattention ofthecentralgovernmenthasturnedto otherapplicationsofwide-bandgapsemiconductors(WBS),forexampleinpower electronicsformobiledevices.Industry andacademiahaveresponded,inR&D aswellasinmanufacturing.Since2016, theChinaInternationalForumonSSLhas beenheldjointlywiththeInternationalForumonWBS.
MostofthisactivityhasinvolvedGaNdevices.OnlyfiveChina-basedcompanies boastSiCcrystalgrowthexpertise.However,in2022SananOptoreceivedsubsidiesof1.03ByuanfromBeijing,including 700MyuanforajointventurewithSTMicroelectronicstomanufactureSiCchipson 200mmwaferswhichmaycomeintoproductionbeforetheendof2025.Thiswill complementtheexistingSiC‘megafab’in Changshabasedon150mmwafers.
EachyeartheChinaSolidStateLighting Alliance(CSA)preparesanannualreport onthestatusoftheLEDlightingmarket. Thisdocument,whichisoftenreferred toasthe“BlueBook”,ispublishedright atthebeginningoftheyearandsogives onlypreliminarydataforthepreceding year.Thissummaryisbasedonthe2023 BlueBook,withsomedataupdatedfrom companyreports.
Theoveralldemandin2023wasweak, withhighinventoryandinsufficientcapacity utilization.Thetotaloutputvaluein2023 wasapproximately658Byuan,down2.6% from2022,ofwhichtheupstreamepitaxialchipscalewas29.5billionyuan,the midstreampackagingscalewas78.2billionyuan,andthedownstreamapplication scalewas550Byuan.Thefollowingchart showsthatsaleshavefallenbelowtheprepandemiclevelsof2018and2019.
Revenuesandgrowthrateofeachlinkinthe SSLindustryinChina2011-2023.
Thetotalrevenueof658Byuanclearly includessomedoubleortriplecounting andexceedsmostestimatesoftotalglobal revenuesforSSL.
Althoughtherevenuesoftheleadingchip makershaveincreasedslightly,profitability declinedsubstantially.SananOptosustainedanoperationallossof825Myuan, comparedtoprofitsof125Myuanin2022 and1750Min2021.Profitabilitywasrestoredin2024Q1,partlythroughareductioninexpenses,includinginR&D.Faced withthesechallenges,theleadingchip makershaveformedpartnershipswithdisplaypanelmanufacturers.HuacanOpto andQianzhaoOptoarenowcontrolled byBOEandHisenseVideorespectively, whileSananhasajointventurewithTCL. Oneexceptiontothegeneraldeclinein profitswasJucanOpto,butthecompany attributestheimprovementtoitsother businessareas.
Asimilarsituationwasseeninthepackagingsector,withincreasedsalesbutreducedprofits.JufeiOptowasamongthe exceptions,withimprovedprofitsaswell assales.Consolidationcontinues.The numberofcompaniesengagedinLED packagingnationwidehasfallenfrommore than1,400tojustover200.
Amongapplications,thedeclineinthe generallightingmarketisthemostobvious. Theoperatingincomeandprofitofthe sectorfellby6.1%and14.4%year-onyearrespectively.But,with2023salesof around247Byuan,generallightingremains thedominantapplication.
Oneemergingsectorthathasshownrapid growthismini-LEDsfordisplaybacklights.
GenerallightingisstillthemainstayofSSLChina.
Thepriceofmini-LEDchipsdroppedby morethan50%year-on-year,andtheprice ofdriverICsfellsignificantly,duetothe maturingoftechnologyandimprovement ofyieldrates.DomesticsalesofTVswith mini-LEDbacklightsinthefirsthalfof2023 were380,000units,ayear-on-yearincreaseof188%.Thetotalmini-LEDbacklightmodulemarketisexpectedtogrow from8.5Byuanin2023to26.8Byuanin 2026.
Mini-LEDbacklightmodulemarketsize(100M yuan).
Thepackagingofmini-LEDshelpedMulinsen(MLS)toachievehighersalesand profitsin2023.Itsoverseasoperations throughLEDVANCEwerestableandMLS mayhavejoinedthetop3globallighting companiesinrevenue,alongwithSignify andAcuityBrands.OppleLightingalso reportedgainsinbothrespectsandisexpandingitspresenceinotherAsiancountries.
Outdoorlightingisalsoshowingstrong growthinChina.AccordingtoGuanyan Tianxia,revenuesrosefrom98Byuanin 2018to164Byuanin2022,drivenmostly bypublicspendingonroadwayandlandscapelighting.Nightlightinghasbecome animportantpartof“culturaltourism”.The GuangzhouInternationalLightFestivalresumedin2023andattractedalmost100M visitors.Inthe3rdquarterof2023,over 1.5Byuanwasinvestedin25regionsto boostnightlightingshows [1] LakesidelightingshowsinXianyangandJiujiang.
Overall,thelightingindustryisregaining itsoptimism.Atleast25companieswere involvedinnewconstructionprojectsin
2023,withatotalinvestmentofover17.5B yuan.Theseincludetheworld’slargest lightingmanufacturingbasewith192productionlinesbuiltinJiujiangbySignifyata costof2.8Byuan.
Japanhastraditionallybeenoneofthe majorglobalbasesforthelightingindustry, particularlyinAsia.Itisdifficulttoassess itsoverallroleinSSLproduction,since themajorproducersareeitherprivateor smallunitsoflargeconglomerates.Some dataisavailablethroughtheJapanLighting ManufacturersAssociation(JLMA).
In2022thevalueofimportsoflighting productstoJapanwas142Byen,farexceedingexportsat12.4Byen.JLMAestimatesthat217MlightingfixtureswereproducedinJapan,withavalueof1030Byen, leadingtototalnationalsalesof224Mfixtureswithavalueof1260Byen(US$8.2B). PenetrationofLEDsinthesefixturesisextremelyhigh,atcloseto98%.
Thesituationregardingreplacementbulbs seemstobeverydifferent.JLMAreports that41Mincandescentbulbsweresoldin 2022alongwith59Mfluorescenttubesand 18Motherdischargelamps.SalesofLED bulbsandtubeswereonly18Mand2.2M, respectively.
Lookingattheperformanceofindividualcompanies,LEDInsidereportsthat globallightingrevenuesatPanasonicwere US$935Minthe6monthsendingSeptember30th,2023,whilethosefromToshiba wereUS$408M.Bothremaininthetopten globallightingcompanies.KoitoManufacturingandStanleyElectricconsolidated theirpositionsamongthegloballeaders inautomotivelighting.Koito’srevenues inFY2024roseby10%to950Byenand profitswereupby20%to56Byen.Substantialsalesgainswereshowninevery globalregionexceptforChina.Stanley Electric’ssalesclimbedby8%to472B yen,whileprofitsroseby3%to36Byen.
Amongthesmallercompanieswithan overseaspresence,EndoLightinghad anexcellentyearingenerallightingand lightingcontrols,withsalesof52Byen forFY2024,upfrom46Byen,andprofits risingby68%to5.2Byen.
Koreawasthedominantsupplierofflat paneldisplaysfor17yearsuntil2021,usingbothinorganicandorganicLEDsas lightsources.However,itsdominanceof theOLEDdisplaymarketisbeingchallengedbyChina.Chinaaccountedfor 42.5%oftheglobaldisplaymarketin 2022,whileKoreahelda36.9%share, accordingtotheKoreaDisplayIndustryAssociation.Inresponse,Korea’sdisplayindustryhasunveiledanambitiousplantoinvestover65trillionwon(US$49B)by2027. Thestrategy,whichwasannouncedin May2023bytheKoreanMinistryofTrade, IndustryandEnergy(MOTIE),aimstoincreaseKorea’sglobalmarketshareto50% andwidenthetechnologygapwithcompetitorsbymorethanfiveyears.
TheKoreangovernmentaimstofacilitate theseinvestmentsbyprovidingsupport throughtaxincentives,publicfinancing ofupto900Bwon,andinfrastructure improvements.Strengtheningthesupplychainisanothercrucialaspectofthe strategy.Koreaaimstoincreaseitsselfsufficiencyratioinmaterials,parts,and equipmentfromthecurrent65percent to80percent.Thesupportwillextendto smallbusinessesoperatinginsectorssuch asfinemetalmasks,exposuremachines, andpackagingequipment.Recognizing theimportanceofskilledhumanresources, thepublicandprivatesectorswillcollaboratetotrain9,000talentedengineersover thenextdecade.Thegovernmentwillestablishspecializedgraduateschoolsand introducenewundergraduatemajorsto cultivatemaster’sanddoctorallevelmanpower.
JunghoonLee,CEOofSeoulSemiconductor(SSC),hasexpressedconcernthat morethan99%ofLEDsusedatdomestic lightfestivalsandregionaleventsareimported [2].Hespecificallyrecommends publicsupportformicro-LEDdisplaydevelopment.SSC’ssalesin2023were1033B won,downfrom1109Bwonin2022and 1301Bwonin2021.Operatinglossesrose from33Bwonin2022to48Bin2023. Toreducecosts,SSChasalreadymoved mostofitschipmanufacturingtoVietnam andistransferringmoreofitsdevelopment worktothatcountry.
AmongthesmallerKoreancompanies, SeoulViosysfocusesonUVandmicroLEDs,alongwithIR/VCSELsandseveral LEDproductsystems.Despitea15% growthinsalesin2023to505Bwon,operatinglossesmountedto73Bwonfrom 62Bwonin2022.Lumenswasableto
reportasmalloperatingprofitof3.1Bin 2023withsalesrisingby3%to171B.
IndiaisthelargestpotentialmarketforSSL inthenextdecade,withGDPgrowingapprox.8%peryearandapopulationthat nowexceedsthatofChina.Itslightingindustryhasbeenreorientedtomanufacture productsbaseduponimportedchipsand packages.
In2022theIndiangovernmentlauncheda ProductionLinkedIncentive(PLI)Scheme toincentivizelocalmanufacturersbyprovidingfinancialsupportandafriendlybusinessenvironment,witha7-yearbudgetof Rs62Brupees.Onegoaloftheschemeis tofortifyIndia’sroleinglobalsupplychains andpositionIndianmanufacturingindustry asacoreexportingnation.Forlighting,the PLIinitiativeaimstoboostlocalvalueadditionfrom25%to85%by2028,covering 87%oftheLEDsector’sBillofMaterial. AlthoughthescopeofthePLIincludesLED chipmakingandpackaging,thecompaniesseemtoagreethatthisisnotviableat thistime.
Furtherbolsteringdomesticelectronics manufacturingofcomponentsistheupcomingschemebytheMinistryofElectronicsandIndustry,withanallocationof200B rupees,alonglinessimilartothePLI.
CromptonGreavesestimatesthatcurrent salesoflightingproductsareabout150B rupees.PhilipsLightingIndiaisstilladominantsupplier,withonemanufacturingplant andover3200employees.StatistaestimatesthattherevenuesofPhilipsIndiain 2021wereabout24Brupees.Panasonic ElectricWorksmaintainsastrongpresence inIndiaandisplanningtoincreaseexports ofproductsthere.AMS-Osramalsostill hassomeinvolvement.
Amongdomesticcompanies,Syskadescribesitselfasoneofthetop3suppliers, with15-20%ofthemarket,butdoesnot providesalesfigurestoconfirmthis.DixonIndiaclaimstobethe4thlargestmanufacturerofLEDlampsintheworldandto produce50%oftheLEDlampsmadein India,making300Mbulbs,50Mtubesand 18Mdownlightsperyear.
ThefiscalyearinIndiaendsonMarch31st. Therevenuesandoperatingprofitsofthe lightingdivisionsofthemajorpubliccompaniesaresummarizedinthe Table 1
Table1: LightingSalesandProfitsforFY2024 (BillionRupees).
SSLhasbeenamixedblessingforthe 280MpeopleofIndonesia.Thecritical needtosaveenergyandreducethedependenceoncoalcausedthegovernment topromotetheadoptionofLEDs.By2019, LEDsaccountedforoverhalfofthestock of680Mlampsandlessthan10%were incandescentorhalogenbulbs.Thisdata comesfromacomprehensivemarketstudy byCLASPandPriceWaterhouseCooper [3]
Upuntil2014,asubstantialnumberof lampsweremanufacturedinIndonesiafor domesticsalesorexports.Butlocalproducershavebeenunabletomatchthe lowcostsofLEDlampsfromChina.So in2018lessthan30%ofthe160Mlamp shipmentswereproduceddomestically. Theproportionvariedbytechnology,from 39%forincandescent,27%forCFL,and 13%forLED.TotallightingexportsfromIndonesiafelldramaticallyfrom56Munitsin 2014to2Min2018.96%oftheimported lampscamefromChina.
DatafromtheAssociationofIndonesiaLightingManufacturers(Gamatrindo) showedthattheyweretryingtoadaptto LEDtechnology.Theirmembershada productioncapacityof58MLEDlampsbut wereabletosellonly6.3Munits.
TheIndonesiangovernmentistakingsteps torebuilditslightingmanufacturingcapabilities.HelpwasprovidedbytheUNin 2020throughthe4-yearprojectADLIGHT [4].Thisinvolvesimplementingregulations, procurementpolicies,newbusinessmodels,andawarenesscampaignstoboost marketpenetrationofenergy-efficient LEDs.EightlocalLEDmanufacturingcompaniesreceivedtechnicalandfinancial assistance.
ThecreationofjobsbasedonnewtechnologiesiscriticaltotheeconomicdevelopmentofallcountriesinAsia.More recentdataontheimpactoftheselighting initiativesinIndonesiaandIndiawillprovide valuableguidancetootherneighboring countries.
Thisarticleprovidesacomprehensive overviewofthesolid-statelighting(SSL) industryinAsia,focusingonthetransformativeroleofgovernmentinterventions, particularlyinChina.Substantialfinancial subsidiesfrombothlocalandnationalgovernmentshavebeenpivotalinestablishing arobustSSLmanufacturingbaseinChina, drivingsignificantgrowthandenabling Chinesecompaniestogainacompetitiveedgeglobally.Despitethebenefits, theindustryfaceschallengeslikemarket saturationandthesustainabilityofsmaller firmsamidstaggressiveexpansion.Other regionsinAsiaarealsoleveragingsimilar strategies,aimingtoharnessSSL’spotentialforenergysavingsandeconomic growth.TheSSLindustry’sfutureinAsia appearsoptimistic,withongoinginvestmentsandinnovationsexpectedtodrive furtheradvancements.Thisregionalfocus onSSLnotonlyunderscoresthecritical roleofgovernmentalsupportintechnologicaladvancementsbutalsohighlightsthe dynamicnatureofthegloballightingindustry. ■
[1] https://www.alighting.cn/news/20231023/175294. htm
[2] https://www.mk.co.kr/en/society/11002197
[3] https://www.clasp.ngo/wp-content/uploads/2021/ 01/Indonesia-Lighting-Market-Study-and-Policy-Ana lysis.pdf
[4] https://indonesia.un.org/en/266443-advancing-ind onesia%E2%80%99s-lighting-market-high-efficient-t echnologies-adlight-factsheet
AdditionalSSLreportsby Dr.Bardsleyalready publishedinthisyear’s LEDprofessionalReview
LpR#102,Mar/Apr2024,p44
Solid-StateLightingReport–TheImpactofLEDsonElectricity ConsumptionandGlobalWarming ThroughtheadoptionofLEDs,thelightingindustryhasmadeasubstantial contributiontothemitigationofglobal warming.Butstocktakingmadein2023 bytheUnitedNationsEnvironmental Program(UNEP)showedthatthetotalglobalefforttoreduceemissionsof greenhousegases(GHG)isfallingfar shortofwhatisneededtoachievethe targetssetintheParisAgreementof 2015.TheWorldMeteorologicalOrganization(WMO)hasjudgedthat2023 wasthehottestyearonrecordandthere seemstobenoslowingintherateof increaseintheglobalmeantemperature. Thepurposeofthisreportistoassess thecontributionoflightinginreaching thesegoalsandtourgetheindustryto maintainitsconcernaboutthisimportant issue.
LpR#101,Jan/Feb2024,p40
Solid-StateLightingReport ThissummaryofthelatestISAreport onSolid-StateLighting(SSL)encompassesacomprehensiveanalysisofthe SSLindustry’sprogression,itsimpact onglobalenergyuse,andfutureoutlooks.Thereportdetailsthesubstantial stridesmadebySSL,emphasizingits potentialinrevolutionizinglightingwhile beingenergy-efficient.Initially,thereport highlightstheimportanceofSSLinthe contextofglobalwarmingandenergy conservation.Itunderscoreslightasa crucialnecessityandtheroleofSSLin providinghigh-quality,affordableartificial lightingworldwide,whichhassignificant implicationsforglobalenergyconsumptionandenvironmentalsustainability. Thereportstressestheindustry’stechnicaladvancesanditsleadershiprolein sustainableresourceutilization.Insummary,thisSSLreportoffersanuanced viewoftheSSLindustry,celebratingits achievementswhilecriticallyanalyzing itschallengesandfutureprospects.It servesasacalltoactionforcontinued innovation,collaboration,andcommitmenttomakingSSLacornerstoneof sustainable,equitable,andhigh-quality lightingworldwide.
Thisphoto,aswellasthecoverofthisissuefeatureArtemide’s luminaire“StellarNebula”.(c)Artemides. www.artemide.com
GoodLightGroup,SocietyforLightTreatmentandBiological Rhythms,theDaylightAcademy,andLugerResearch|7thEdition
CharnaDibnercompletedherPhDinMedicalSciencesunderthesupervisionofProfessorDaleFrankintheDepartmentof BiochemistryattheTechnionIsraelInstitute ofTechnology,headedbyNobelLaureate ProfessorAvramHershko.Shenextmoved toGenevawhereshecompletedherpostdoctoraltrainingattheFacultyofScience, UniversityofGeneva,withProfessorUeli Schibler,workingonthemechanismsof transcriptionalandtemperaturecompensationofthemammaliancircadianclocks. In2009,shewasappointedasaGroup LeaderoftheLaboratoryofCircadianEndocrinologyattheFacultyofMedicine, acquiredherPrivateDocentdegree,and wasnominatedAssociateProfessorin 2021.Herworkcentersupontheimplicationofcircadianoscillatorsinregulationof metabolicprocessesinmammals.Inparticular,sheisinterestedinintricateinterplay betweentheisletcellularclocks,andinthe inter-organdesynchronyuponmetabolic diseases,unravelingtherolesofthecircadianclocksinhumanmetabolicdiseases. Charna’sworkhasbeenawardedwith severalprestigiousSwissprizesincluding RocheResearchFoundationprize,Takeda prizefordiabetesresearch,theawardsby FrenchSwissFoundationofDiabetesResearch,andLeenaardsandISRECFoundationawardsfortranslationalresearch.
Theimpactoflightisdependentonwhen itoccursrelativetotheinternalbiological clock,andassuchthetimingofwhenwe getlightordarkacross24-hoursmatters. Lightexposurepatternsareamodifiable factorthatcanhavesignificantimpacton healthandwellbeing.Resultsfromreal worldandlaboratory-controlledstudies thatexaminetheimpactoflightexposure onhealthwillbediscussed.Frompregnant womentoolderadults,datafromrealworldmonitoringoflightlevelssuggests thathigherlevelsoflightexposureinthe fewhoursbeforeandduringsleepareassociatedwithpoormetabolichealth.The mechanismunderlyingthesefindingsare supportedbycontrolledlaboratory-based studiesexaminingtheimpactoflighton cardio-metabolicfunction.Togetherthese studiessuggestthatinterventionstooptimizethepatternoflight-darkexposure acrossthe24-hourdaycouldbebeneficial tohealthinvulnerablepopulations.
Hetalksaboutarecentlycompletedstudy, inwhichhetestedifnaturaldaylightduring officehoursismorebeneficialformetabolic healthoutcomesoftype2diabetespatientscomparedtoconstantartificiallighting. RecordedTalk
https://bit.ly/3V5V53o
https://bit.ly/4bay5pN
youtube.com/c/LpSDIGITAL
Supportedby
ADCLOSE
June30,2024
MATERIALDUE
June30,2024
DIGITALPUBLICATION
July15,2024
PRINTPUBLICATION
July31,2024
TheJuly/August2024issueofLEDprofessionalReviewwillfocusontheverylatest topicsintheworldoflighting.Wewillbe introducingarevolutionaryphosphortechnologythatachieveshighCRIvalues.Areport fromSignifywillrevealthelatesttrendsin3D printedluminaires.Thisissuewillalsoinclude thefirstpublicationofanewwhitepaper fromTheGoodLightGroup.Ontopofall that,wewillbeintroducinganotherexpertto youinourcontinuinginterviewseries withtheCIE.
Itgoeswithoutsaying,thattoroundoutthis issue,therewillbethelatestinternational lightingnewsandanewLpSDigitalTalksas wellasacommentaryfromaleadinglighting authority.
∗ Subjecttochangewithoutnotice.
editors@led-professional.com
Pleasedon’thesitatetosendusyouropinionsoraskquestionsaboutarticlesyouhave read.Weappreciateyourfeedback. editors@led-professional.com
LpRDigitalMagazine
• eMagazine(PDFdownload)
• 6IssuesperYear(Bi-monthly)
• FullArchiveAccess (allpreviouseMagazineissues)
• BusinessIssuetoshareandusewithin organizations
• EUR78.80
LpRPrinted&DigitalMagazine
• PrintMagazineincludingshipping
• eMagazine(PDFdownload)
• 6IssuesperYear(Bi-monthly)
Subscribe
https://www.led-professional.com/misc/sub scribe Advertise
https://www.led-professional.com/advertise
• FullArchiveAccess (allpreviouseMagazineissues)
• Shippingcostsincluded
• EUR97.80
CoverPage: StellarNebulaisafamilyof lampsdesignedbyBIGtointerpretand enhancetheartisanalglassblowingwithinnovativePVDfinishingtechniques.Values, roles,andlimitsofindustrialandartisanal productionareatthecoreofthisdesignidea, whichaimstofindasolutionforuniqueness inproduction.
(c)Artemide, www.artemide.com ImageCredits:Artemide.
LEDprofessionalReview(LpR) ISSN1993-890X
PublishingCompany
LugerResearche.U.|©2001–2024 InstituteforInnovation&Technology Moosmahdstrasse30,A-6850Dornbirn,Austria,Europe info@lugerresearch.com|www.lugerresearch.com P+435572394489|F+43557239448990
Publisher SiegfriedLuger
Editors
+4369911335570 s.luger@lugerresearch.com
Dr.GüntherSejkora +43557239448970 editors@led-professional.com
TheresaKönig +43557239448970 editors@led-professional.com
ElioA.Farina +43557239448970 editors@led-professional.com
Art&Design SarahLuger +436802305445 hallo@moments-of-aha.com
AccountManager ChristineLuger +4369911335520 c.luger@lugerresearch.com
China,Hong-Kong
LoloYoung +85297922081 lolo@castintl.com
Germany,International ArminWezel +493052689192 armin@eurokom-media.de
India
PriyankaRai +911244787331 priyanka.rai@binarysemantics.com
SouthKorea Jung-WonSuh +8227858222 sinsegi@sinsegimedia.info
Taiwan
LeonChen +886225681786-10 Jeon@jkmedia.com.tw
Benelux,France,Ireland,Scandinavia,UK ZenaCoupé +441923852537 zena@expomedia.biz
USA&Canada
LesleyHarmoning +12186866438 lesley@lhmandco.com
JillThibert +12182802821 jill@lhmandco.com
Theeditorsmakeeveryreasonableefforttoverifytheinformation published,butLugerResearche.U.assumesnoresponsibilityforthe validityofanymanufacturers,nonprofitorganizationsorindividuals claimsorstatements.LugerResearche.U.doesnotassumeand herebydisclaimsanyliabilitytoanypersonforanylossordamage causedbyerrorsoromissionsinthematerialcontainedherein, regardlessofwhethersucherrorsresultfromnegligence,accident oranyothercausewhatsoever.Youmaynotcopy,reproduce, republish,download,post,broadcast,transmit,makeavailableto thepublic,orotherwiseuseLEDprofessionalReview(LpR)content withoutpriorwrittenconsentfromLugerResearche.U.
©2001–2024LugerResearche.U.–InstituteforInnovation&Technology–VATNo.ATU50928705,EORINo.ATEOS1000046213, CommercialRegisterFN316464p,RegionalCourtFeldkirch,Austria, Europe ■