Nonlinear Vibration of a Cantilever Beam

Page 32

Equation (2.57) indicates flexure induced torsion is a nonlinear phenomenon (Malatkar, 2003). Substituting (2.56) and (2.57) into (2.49) and (2.50) yields the order three equations of motion for the flexural-flexural-torsional vibration of a cantilever beam. s ⎡ s ⎤ mv&& + cv v& + Dζ v iv = Qv + {( Dη − Dζ ) ⎢ w' ' ∫ v" w" ds − w' ' ' ∫ v" w' ds ⎥ 0 ⎣ l ⎦ s s ( D − Dζ ) 2 − η ( w' ' ∫ ∫ v' ' w' ' dsds )'}'− Dζ {v' (v' v' '+ w' w' ' )'}' Dξ 0 l s

s

(2.58)

s

1 ∂2 − m{v' ∫ 2 [ ∫ (v'2 + w'2 )ds ]ds}'−(v' ∫ Qu ds )' 2 ∂t 0 l l s ⎤ ⎡ s && + cw w& + Dη w = Qw − {( Dη − Dζ ) ⎢v' ' ∫ v" w" ds − v' ' ' ∫ w" v' ds ⎥ mw 0 ⎦ ⎣ l 2 s s ( D − Dζ ) + η (v' ' ∫ ∫ v' ' w' ' dsds )'}'− Dη {w' (v' v' '+ w' w' ' )'}' Dξ 0 l iv

s

s

(2.59)

s

1 ∂2 − m{w' ∫ 2 [ ∫ (v'2 + w'2 )ds ]ds}'−( w' ∫ Qu ds )' 2 ∂t 0 l l

The boundary conditions for (2.58) and (2.59) are given by v(0, t ) = 0, v" (l , t ) = 0,

w(0, t ) = 0, w" (l , t ) = 0,

v' (0, t ) = 0, v' ' ' (l , t ) = 0,

w' (0, t ) = 0 w' ' ' (l , t ) = 0

(2.60)

The boundary conditions for the free end are derived from (2.53). The equation of motion and boundary conditions for the forced planar flexural vibration of the beam is obtained from equations (2.58) and (2.59). For planar motion, equation (2.59) is dropped along with the w terms in (2.58). With these substitutions equation (2.58) becomes

32


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.