5) PROYECCIÓN ESTEREOGRÁFICA 5.1. Definición y propiedades Dado el carácter tridimensional de los cristales, para su mejor representación se usan proyecciones de tal manera que se conserven al máximo las constantes angulares y la simetría. Entre las diferentes proyecciones que pueden utilizarse, vamos a estudiar y trabajar con la proyección estereográfica que utiliza la siguiente metodología: Suponemos un cristal en el centro de una esfera de radio arbitrario. Se trazan las normales a las caras del cristal que se prolongarán hasta que intercedan con la superficie de la esfera, en unos puntos llamados POLOS. Como los polos hay que representarlos sobre un plano, se elige como plano de proyección el plano ecuatorial de la esfera. Polo norte
x
x x
x
centro de la cara Polo sur Proyección de una cara del hemisferio inferior en el plano ecuatorial
x Proyección de una cara del hemisferio superior en el plano ecuatorial
Como puntos de vista se utilizan el polo sur para las caras situadas en el hemisferio norte y el polo norte para las caras situadas en el hemisferio sur. Los puntos de proyección sobre el plano ecuatorial se obtienen de las intersecciones de las normales de las caras del cristal hacia la superficie de la esfera. Propiedades de la proyección estereográfica: 1. Cada cara tiene un polo 2. Todas las caras del cristal proyectado serán puntos o polos. 3. Los polos de las caras de una misma zona están en círculos máximos. 4. Los ángulos diedros del cristal aparecen en la proyección como sus suplementos, es decir, los ángulos que forman las caras corresponden a los lados. 5. La proyección de una circunferencia es otra circunferencia. 6. El ángulo de dos curvas se proyecta en su verdadero valor. 7. Si los planos de simetría son perpendiculares al plano de proyección se representa por una recta. 8. Si el plano es horizontal, como coincide con el plano de proyección se representa por una línea continua. 9. Los planos de simetría oblicuos del sistema cúbico se proyectan como diámetros del círculo de proyección.
58